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Abstract

There has been great interest in the primary visual cortex (V1) since pioneering studies
decades ago. However, existing models cannot explain V1 neural responses to complex
stimuli satisfactorily. One possible reason for this failure is the models’ lack of recurrent
connections, which form the bulk of synaptic connections in V1 and greatly contribute to the
complexity of the visual system.

The goal of my thesis is to develop, test, and understand neural network models of
recurrent circuits in V1 and the visual system in general. I have completed two studies and
propose to finish an additional study.

My first study has demonstrated that the Boltzmann machine, a type of recurrent neural
network, is useful for conceptualizing certain V1 recurrent computations.

My second study has demonstrated that the CNN’s key components are crucial to its
superior performance in explaining V1 data and are consistent with previous V1 studies.
While not directly related to recurrent circuits, this project has demonstrated that neural
response prediction is a useful metric for selecting models with high correspondence with
biological reality. The metric and analysis methods here will be used in the proposed work.

In the final project, I propose to advance our understanding of recurrent circuits of V1
in a two-part investigation. First, I will find candidate models for V1 recurrent circuits, by
designing models with recurrent computation components for predicting neural responses as
well as predicting certain phenomena observed in V1 studies. The models to be explored
will feature two new complementary designs: model architecture and training methodology.
Preliminary results show that models with these designs can perform as well as state-of-the-art
approaches using fewer parameters and less data.

Second, I will explain the role of recurrent connections in the candidate models for
modeling V1 using various tools in machine learning as well as existing knowledge about
V1.

Overall, this investigation will provide new neural network models with recurrent con-
nections for explaining more V1 phenomena with higher accuracy, establish correspondence
between model components and biological reality, and provide new insights about the roles
of recurrent circuits in V1 and visual signal processing in general.
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Chapter 1

Introduction

1.1 Background and motivation

There has been great interest in the primary visual cortex (V1) since pioneering studies
decades ago [60, 58, 59]. V1 neurons are traditionally classified as simple and complex cells,
which are modeled by linear-nonlinear (LN) models [52] and energy models [1], respectively.
By construction, these standard V1 models (LN models and energy models) only respond to
stimulus change with in neurons’ classical receptive fields or CRFs [50], which are classically
defined as regions in the visual space where the presence or absence of small, impulse like
stimuli (bright or dark dots) can cause change in neural response.

The above standard V1 models have been successful in explaining V1 response to
relatively simple stimuli, such as bars, edges and gratings [117]. However, they cannot
explain satisfactorily neural responses to more complex stimuli such as complex shapes and
natural images [27, 140, 53, 77, 134, 11], under which V1 neurons exhibit complex nonlinear
response properties; these properties not predicted by standard models are collectively called
non-classical receptive field (nCRF) effects [160] in this document. When natural stimuli
are used, V1’s nCRF effects result in a significant portion (no less than 50 %) of variance in
neural responses left unexplained by most existing models, including those state-of-the-art
ones based on neural networks (see below), for predicting V1 data [27, 77, 11].

One possible reason for the failure of existing models in terms of explaining neural
responses to natural stimuli is the lack of recurrent connections in these models. In the brain,
it is well known that there are local horizontal recurrent connections between neurons in the
same area [65] and long-range feedback recurrent connections between neurons in different
areas [39]. By some count [34], more than 90% of the excitatory synapses and virtually all
of the inhibitory ones in V1 come from recurrent connections. These connections greatly
contribute to the complexity of the visual system, and may be essential for the success of
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the visual systems in reality; for example, there are evidences that recurrent connections are
crucial for object recognition under noise, clutter, and occlusion [102, 129, 112].

One possible way to study the potential role of recurrent connections in nCRF effects
and other phenomena in V1 is to model them using neural networks. In recent years,
neural network models have been used to study various visual areas with great success (see
Section 3.2 for details). As a consequence of their current success and biological realism
relative to other computational models, neural network models provide a viable tool for
exploring computational (and, to a lesser extent, mechanistic) mechanisms of V1 and early
visual areas in general. Furthermore, as neural network models in general allow end-to-end
training more easily than other computational models, V1 models based on neural networks
can be trained on data sets containing large numbers of neurons and complex, natural stimuli
to test the validity of these models in a more realistic setting. In contrast, studies on V1
nCRF effects based on other computational models (see Section 3.1 for details) involve a
significant amount of “hand crafting”: filter weights that are fixed and may not generalize to
complex natural stimuli, architectures that specifically engineered for specific experiments
conducted in the studies, etc.; therefore, the utility of (most of) these models for explaining
neural responses to large numbers of complex, natural stimuli is limited. Recent studies have
begun to explore the benefits of recurrent connections in many machine learning settings
[97, 25, 91, 88]; however, the role recurrent connections play in the primary visual cortex
and early visual areas in general remains unexplained.

1.2 Summary of the proposal

The overall goal of my thesis is to develop, test, and understand neural network models of
recurrent circuits in the primary visual cortex.

My first project [158] attempted to learn horizontal recurrent connections between V1
disparity-tuned neurons by learning from 3D natural scene data. The learned connectivity
patterns were consistent with connectivity constraints in stereopsis models [92, 120], and
simulated neurophysiological experiments on the model were consistent with neurophysio-
logical data in terms of functional connectivities among disparity-tuned neurons in V1 [119].
This study has demonstrated that the Boltzmann machine, which is inspired by neuroscience
but often dismissed to be too abstract and different from the real brain, is in fact a useful and
viable model for conceptualizing certain recurrent computations in the primary visual cortex.

My second project [157] systematically evaluated the relative merits of different (feedfor-
ward) CNN components in the context of modeling V1 neurons. We demonstrated that key
components of the CNN (convolution, thresholding nonlinearity, and pooling) contributed to
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its superior performance in explaining V1 responses to complex stimuli [134] and these key
components are consistent with previous V1 modeling and neurophysiology studies. While
this project is not directly related to recurrent circuits, it has demonstrated that predicting
neural responses to natural and complex stimuli accurately is a useful objective metric for
identifying neural network models with high correspondence with biological reality; in addi-
tion, it has shown the usefulness of various ablation, dissection, and visualization methods for
comparing and understanding neural network models of different architectures. The metric
and methods in this study have laid the foundations for developing and analyzing models
with recurrent computation components in the proposed work.

In the proposed final project in this document, I plan to advance our understanding of
recurrent circuits of the primary visual cortex and the visual system in general, in a two-part
investigation.

First, I will try to find candidate models for recurrent circuits of V1, by designing and
evaluating different neural network models with recurrent computation components for
predicting V1 neural responses to natural images as well as predicting other phenomena
observed in V1 neurophysiology studies. The rationale here is that better-performing models
for V1 data may have more similarities to the biological reality [157, 151]. Compared
to feedforward neural network models used in typical data-driven and transfer learning
methods (Section 3.2), the candidate models to be explored will feature new designs from
two complementary aspects: model architecture (recurrent vs. feedforward computation
components) and training methodology (loss functions, number of training phases, etc.).
Preliminary results show that models with these two new designs can perform as well as
state-of-the-art approaches with fewer parameters and less data.

Second, I will try to explain the role of recurrent computation components in these
high-performing models for explaining V1 data, by first simplifying models with various
model compression techniques without sacrificing much performance and then analyzing
the simplified models using various tools for neural network analysis as well as existing
knowledge about V1. In particular, I propose to use recurrent computation components in
my candidate models to 1) provide alternative and more-detailed explanation of contextual
modulation [23], a well-known phenomena in V1, and 2) explain familiarity effect in early
visual areas [56], a newly found phenomena in V2 and early visual areas in general. The end
product of achieving any of the two above goals would be a valuable contribution to NIPS or
other high-profile neuroscience conferences and journals.

Overall, this investigation will provide new neural network models with recurrent com-
putational components for explaining more V1 phenomena with higher accuracy, establish
correspondence between model components and biological reality, and hopefully provide
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new insights about the roles of recurrent circuits in V1 and visual signal processing in general
in the context of contextual modulation and familiarity effect.

I will summarize my two completed studies on V1 in Chapter 2 and present the proposed
work plus preliminary results in Chapter 4; in addition, background knowledge on the
proposed work is provided in Chapter 3.

1.3 Timeline

• November 2018–May 2019, finish proposed work in Chapter 4.

• May 2019–July 2019, thesis writing and defense.

1.4 List of finished works

1. Relating functional connectivity in V1 neural circuits and 3D natural scenes using
Boltzmann machines [158], see Section 2.1.

2. Convolutional neural network models of V1 responses to complex patterns [157], see
Section 2.2.



Chapter 2

Two completed studies on the
computational mechanisms of V1

In this chapter, I will first present the main results of my two completed studies on V1 with
Zhang et al. [158] in Section 2.1 and Zhang et al. [157] in Section 2.2; then I will discuss
their relationships to the proposed work (Section 2.3).

2.1 Relating functional connectivity in V1 neural circuits
and 3D natural scenes using Boltzmann machines

Bayesian theory has provided a compelling conceptualization for perceptual inference in
the brain. Central to Bayesian inference is the notion of statistical priors. To understand the
neural mechanisms of Bayesian inference, we need to understand the neural representation of
statistical regularities in the natural environment. In this paper, we investigated empirically
how statistical regularities in natural 3D scenes are represented in the functional connectivity
of disparity-tuned neurons in the primary visual cortex of primates. We applied a Boltzmann
machine model to learn from 3D natural scenes, and found that the units in the model
exhibited cooperative and competitive interactions, forming a “disparity association field”,
analogous to the contour association field. The cooperative and competitive interactions
in the disparity association field are consistent with constraints of computational models
for stereo matching. In addition, we simulated neurophysiological experiments on the
model, and found the results to be consistent with neurophysiological data in terms of
the functional connectivity measurements between disparity-tuned neurons in the macaque
primary visual cortex. These findings demonstrate that there is a relationship between the
functional connectivity observed in the visual cortex and the statistics of natural scenes.
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They also suggest that the Boltzmann machine can be a viable model for conceptualizing
computations in the visual cortex and, as such, can be used to predict neural circuits in the
visual cortex from natural scene statistics.

2.1.1 Introduction

Natural scenes contain significant ambiguity. To resolve ambiguities and obtain a stable 3D
percept of the world, the visual system (as well as the whole brain) must perform inference,
integrating current sensory data with prior knowledge of the world formulated from past
experience. Therefore, (Bayesian) inference has long been proposed as a fundamental
computational principle of the brain [144, 74]. In this work, we attempt to address one of the
key questions for understanding Bayesian inference in the brain, in the context of the primary
visual cortex (V1): how might an internal model of natural scenes—the Bayesian prior—be
encoded in the brain?

To support visual inference, an internal representation of the visual scenes requires
encoding both the statistical regularities of the boundaries and of the surfaces themselves.
There have been studies suggesting that the neural circuits in the primary visual cortex
(V1) encode contour priors in the form of the contour association field [40, 64, 44, 38,
10, 85, 96, 119, 120]. Recent neurophysiological evidence suggests that disparity-tuned
neurons in the primary visual cortex might form a recurrent network for stereo processing
[119, 120]. This network encodes the statistical correlation of disparity signals in natural
scenes, complementing the contour association field, and is referred to as the disparity
association field. However, the neural mechanisms by which statistical priors of boundaries
and surfaces from the environment can be learned are not well understood.

We hypothesize that the empirically observed neural connectivity between disparity-tuned
neurons in V1 can be predicted from 3D natural scenes using a Boltzmann machine. To
test this hypothesis, we fitted a Boltzmann machine neural network model [54] to disparity
signals derived from 3D natural scene data, and found that 1) learned parameters in the model
were consistent with connectivity constraints in stereopsis models [92, 120]; 2) the model
was consistent with neurophysiological data in terms of functional connectivities among
disparity-tuned neurons in V1 [119]. The results provide further evidence in support of the
notion of the disparity association field, and demonstrate that the Boltzmann machine is a
viable model for describing cortical computation in the sense that they can be used to predict
functional neural circuitry in the visual cortex.
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Fig. 2.1 (a) Diagram for calculating disparity. Adapted from Liu et al. [89]. See Eqs. (1)-(3)
of Zhang et al. [158] for detail. (b) One sample range image from the Brown data set (upper)
with disparity values along one line in it (lower left), and two extracted disparity patches
(lower right). In the upper image: red crosses, fixations points for two patches; yellow
crosses, center of patches; red long rectangle, the row shown disparities. Patches were 3°
away from fixation and had a half-width of 2°.

2.1.2 Methods

2.1.2.1 3D scene data

We trained a Boltzmann machine to model the disparity signals over a small visual field.
These signals were derived from the Brown Range Image Database [57]. A total of 200K
disparity image patches with a 2° half-width were extracted from 172 images (54 forest,
49 interior, 69 residential). The images in the Brown data set were captured by a scanner
with range at 2 m to 200 m, and image resolutions were approximately 5 pixels per degree of
visual angle.

Disparity image patches were generated from each range image as follows (Figure 2.1b).
A random point in the range image was chosen as the fixation point. Given the fixation point,
the disparities at its surrounding pixels were computed using the method in Liu et al. [89].
Finally, a disparity image patch with a 2° half-width was extracted 3° away from the fixation
point. This eccentricity was chosen to roughly match the typical receptive field locations of
recorded V1 neurons in our earlier neurophysiological experiments.

2.1.2.2 Boltzmann machines

Interaction among neurons modeled by Boltzmann machines The extracted disparity
image patches reflect the prior of disparity signals in the natural scene, and we modeled
this prior by fitting a Boltzmann machine to the patches. Boltzmann machines [54] are a
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class of stochastic recurrent neural network models that can learn internal representations to
explain or generate the distribution of the input data, using pairwise connectivity between
units to encode the structures of the input data. Boltzmann machines are also a type of
Markov random fields, which are widely used in computer vision for solving a variety of
early vision problems such as surface interpolation and stereo inference [45, 75, 7, 135]. We
hypothesize that Boltzmann machines are a viable computational model for understanding
the circuitry of the visual cortex, and we will examine if they can explain interactions among
neurons in other computational and neurophysiological studies [92, 119, 120]. Specifically,
the interaction terms β⃗ββ (Eq. (2.1)) in our Boltzmann machine model were compared with
existing computational models in Section 2.1.3.2, and neurophysiological experiments were
simulated on the model (Section 2.2.2 of Zhang et al. [158]) to compare it with neural data
in Section 3.3 of Zhang et al. [158].

The units in our Boltzmann machine model (Figure 2.2a) are organized into a hidden
layer and a visible layer, arranged in a spatial 5 by 5 grid of “hypercolumns” (in total C = 25
columns). Each hypercolumn has a bank of M = 16 visible units that encode the disparity
input, and a bank of 16 corresponding hidden units h⃗hh, all sharing the same spatial receptive
field location. The N = MC = 400 hidden units are fully connected, each of them driven by
its corresponding input visible unit. The collective spiking activity at each bank of visible
units encodes the disparity signal at the corresponding hypercolumn.

This model is formally expressed as a probability distribution over hidden and visible
units:

P(⃗hhh,⃗vvv; α⃗αα, β⃗ββ ,⃗γγγ, λ⃗λλ ) =
1
Z

exp

(
N

∑
i=1

αihi +∑
i< j

βi, jhih j +
N

∑
i=1

λihivi +
N

∑
i=1

γivi

)
. (2.1)

In Eq. (2.1), h⃗hh and v⃗vv are binary vectors whose distributions are to be captured by the model,
representing spiking activities of hidden and visible units. The other model parameters
capture the distributions of h⃗hh and v⃗vv, as well as their interactions. Specifically, α⃗αα and γ⃗γγ capture
the baseline firing rates of hidden and visible units, β⃗ββ models the pairwise lateral interactions
among hidden units, and λ⃗λλ models the interactions between hidden and visible units. Z is a
normalization constant.

This Boltzmann machine was fitted by finding parameters α⃗αα , β⃗ββ , γ⃗γγ , and λ⃗λλ that maximize
the probability of the model for generating the spike patterns v⃗vv, corresponding to the disparity
signals in the extracted patches. Formally, the following log likelihood was maximized:

L(α⃗αα, β⃗ββ ,⃗γγγ, λ⃗λλ ) =
T

∑
i=1

logP(⃗vvv(i); α⃗αα, β⃗ββ ,⃗γγγ, λ⃗λλ ) =
T

∑
i=1

log
2N

∑
j=1

P(⃗hhh
( j)
,⃗vvv(i); α⃗αα, β⃗ββ ,⃗γγγ, λ⃗λλ ). (2.2)
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In Eq. (2.2), v⃗vv(i)’s are T binary spike patterns of the visible units converted from the disparity
signals based on the tuning curves of the visible units (see Figure 2.3 and Section 2.1.2.2).

The likelihood of observing v⃗vv(i) is computed as the sum of P(⃗hhh
( j)
,⃗vvv(i)) over all possible

2N hidden unit patterns, which is the marginal probability for the model to generate v⃗vv(i),
regardless of the hidden units. Finally, the log probability for the model to generate all the
input spike patterns due to the disparity signals is computed as the sum of log probabilities
for generating each particular spike pattern v⃗vv(i). The model was trained using contrastive
divergence mean field learning [148]. See Section 2.2.3 of Zhang et al. [158] and Welling
and Hinton [148] for more detail.

Conversion of disparity signals into binary spike patterns From each disparity image
patch i, disparity values si

1,s
i
2, . . . ,s

i
C=25 corresponding to the locations of the 25 hyper-

columns were extracted, and the model was fitted to explain these disparity values across all
patches. Disparity signals are real-valued, and must be converted into binary spike patterns,
which can be considered as the spiking activities of the bottom-up input to V1 neurons.
Following the approach of Ganguli and Simoncelli [42], we derived a set of M = 16 tuning
curves for visible units (same for all the hypercolumns, Figure 2.2c) according to the distri-
bution P(s) of extracted disparity values from all patches (Figure 2.2b). Each disparity value
was converted to the mean firing rates of M = 16 visible units based on their tuning curves.

Given the above derived tuning curves, for each patch, we first converted the C = 25
disparity values into the mean firing rates of the N = 400 visible units. Then for each of
these N units, a spike train of 200 ms was generated based on its mean firing rate using an
independent homogeneous Poisson process, and the whole spike train was partitioned into
20 bins of 10 ms1. A “1” was assigned to a bin of a unit if there were one or more spikes for
that unit within that time bin; otherwise, a “0” was assigned. The whole generation process
(for one disparity value) is schematically shown in Figure 2.3.

2.1.3 Results

We mainly compared the model with existing computational models in terms of connectivity
constraints (Section 2.1.3.2), and neurophysiological data in terms of functional connectivities
(Section 3.3 of Zhang et al. [158]). The model showed qualitative agreement in both aspects.
In the following comparisons, the hidden units correspond to the disparity-tuned V1 neurons,
likely realized in terms of the complex cells in the superficial layer of V1 where there are

1Our implementation was written in terms of bins, with no notion of the physical duration of each bin. We
arbitrarily assumed each bin to be of 10 ms, for easier comparison with neurophysiological data and other
studies based on Ising models (a type of Boltzmann machines).
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extensive horizontal axonal collaterals forming a recurrent network. The visible units provide
the bottom-up input to these V1 complex cells, and they encode disparity signals which in the
brain are computed by combining monocular left and right eye simple cells based on phase-
shift or position-shift mechanisms [41]. The input from visible units, or the corresponding
signals in the brain, are assumed to be “decorrelated” across space when stimulus correlation
is factored out [37]. The prior of natural scenes is assumed to be captured by the lateral
connectivity among hidden units in the model or among disparity-tuned V1 neurons in the
brain. These intrinsic horizontal connections can give rise to noise correlation and other
correlated activities among neurons [128, 68, 24].

2.1.3.1 First order properties of learned hidden units

Figure 2.4 shows typical tuning curves of the hidden units obtained from the model simulation
of neurophysiological experiments (Section 2.2.2 of Zhang et al. [158]), and the distribution
of bias terms α⃗αα ,⃗γγγ . Hidden units shared the same preferred disparity and the general shape
as their corresponding input visible units. The bias terms are negative, indicating that the
hidden units tend to fire sparsely.

2.1.3.2 Comparison with computational models in terms of connectivity constraints

The learned lateral connections β⃗ββ among hidden units form what we call the disparity
association field, analogous to the well-known contour association field for orientation-
tuned neurons [40]. The lateral connectivity, or the disparity association field, observed in
the trained Boltzmann machine model is qualitatively in agreement with the cooperative and
competitive circuits predicted by Marr and Poggio [92], and with the recent model of Samonds
et al. [120] which has been successful in more accurately accounting for neurophysiological
data of disparity-tuned neurons in V1.

We define the disparity association field of a hidden unit as the set of lateral connections
between it and other hidden units. Figure 2.5a illustrates the disparity association field of
one unit tuned near zero disparity in the center column of the 5×5 grid, showing its lateral
connections β⃗ββ to all other units in the network along a particular direction in the grid. The
x-axis indicates different hypercolumns or spatial locations, and the y-axis indicates units
with different disparity tunings.

The disparity association field learned by the Boltzmann machine has a number of
noteworthy features. First, in terms of inter-columnar connections, i.e. connections between
a unit with units in other hypercolumns, units with the same or similar disparity tunings
tended to form positive connections across hypercolumns (spatial receptive field locations)
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and units with very different disparity tunings formed negative connections. Figures 2.5b
and 2.5c show in greater detail how each unit in one hypercolumn was connected to units of
various disparity tunings in other hypercolumns. The dark bold line highlights that unit 8 in
one hypercolumn formed positive (excitatory) connections to similarly tuned units (units 6,
7, 8, 9) in the other hypercolumns, and negative (inhibitory) connections to units tuned to
very different disparities. Second, in terms of intra-columnar connections, i.e. connections
between units in the same hypercolumn, units exhibited excitation for very similarly tuned
units in the same hypercolumn, but exerted a suppressive effect on units of dissimilar tuning
properties, as shown in Figure 2.5d. These properties of inter- and intra-columnar connections
are roughly consistent with the cooperation between neurons of similar disparities across
space (the so-called continuity constraint), and the competition among neurons of different
disparities at the same spatial location (the so-called uniqueness constraint) in Marr and
Poggio [92]’s classical stereopsis model for solving the correspondence problem.

However, the lateral connectivity exhibited by the Boltzmann machine model was richer
than that in Marr and Poggio [92]’s model. First, in terms of intra-columnar connections, in
addition to the negative (competitive) intra-columnar connections in Marr and Poggio [92]’s
model (Figure 2.6a, blue), our model also learned positive intra-columnar connections among
units of similar tunings (Figure 2.6b). In this aspect, our model is more consistent with
the model in Samonds et al. [120], which assumes that the intra-columnar interaction has a
center excitatory (cooperation between similar neurons) surround inhibitory (competition
between dissimilar neurons) profile. This profile is more biologically realistic than that of
Marr and Poggio [92], taking into account the overlapping nature of tuning curves within
a hypercolumn, and the model in Samonds et al. [120] has been shown to explain well the
temporal evolution of a number of tuning properties of V1 disparity-tuned neurons.

Second, in terms of inter-columnar connections, Marr and Poggio [92]’s model only spec-
ifies positive inter-columnar connections between neurons of the same tuning (Figure 2.6a,
red), implicitly making the strong assumption that the surfaces of the world are all fronto-
parallel. However, surfaces in natural scenes are more diverse, characterized with a variety
of surfaces such as slants and tilts, convexities and concavities. This richness in natural
scene surface structures likely induced the greater variety of inter-columnar connectivity
observed in our model (Figure 2.6c) that captures the 3D surface priors to a higher degree
than connectivity constraints made in the works of Marr and Poggio [92] and Samonds et al.
[120]. Our model is likely more consistent with more advanced computational models for
stereopsis that take into account slant, tilt, and curvature [83, 7, 110].
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Fig. 2.2 Schematic of our Boltzmann machine model (a), distribution of extracted disparity
values P(s) (b), and derived tuning curves of input visible units, with one curve highlighted
(c). (a) 25 “hypercolumns” laid in a 5 by 5 grid covering a 4° by 4° patch, with hidden
units (⃗hhh, black outline) in the same column grouped in dashed box. Each hidden unit has
connections (black) to all other ones, and one connection (red) to its own visible unit (⃗vvv,
white outline). At most two hidden units and one visible unit drawn per column, with many
connections missing for clarity. Columns are numbered for reference in Section 2.1.3. (b)
The distribution of extracted disparity values was sharp, and peaked at zero. (c) Tuning
curves of v⃗vv were derived based on Ganguli and Simoncelli [42] with the following details:
“baseline” curve was a t distribution with d.o.f. ν = 2, total expected firing rate (R in Ganguli
and Simoncelli [42]) was unity, and “infomax” optimization criterion was used. Only tuning
curves between −1° and 1° are shown for clarity. Given the sharp distribution of disparity
values, the theory in Ganguli and Simoncelli [42] made the tuning curves at large disparities
different from those close to zero. Instead of Gaussian-like (see Figure 2.3a for a zoom-in
view of tuning curves close to zero), the tuning curves at the two ends of the input distribution
were relatively flat at large (positive/negative) disparities, and dropped to zero near zero
disparity. Interestingly, these were very similar to the near-tuned and far-tuned neurons in
Poggio and Fischer [108] and Poggio et al. [109]. We also tried Gaussian distribution as the
“baseline” curve, but that gave much sharper tuning curves and less co-activation between
dissimilar units, which resulted in a less biologically realistic training result.
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Fig. 2.3 Generation of training data for one disparity value. Given one disparity value (a)
(in this case s = 0), we transformed it into M = 16 mean firing rates (b) using tuning curves
(between (a) and (b)), generated spike trains (c), and binned it into a binary matrix (d) as
training data to the Boltzmann machine.
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Fig. 2.4 Some first order properties of the trained Boltzmann machine model. (a) tuning
curves of hidden units 4, 8, 12 in column 1 of the model (inset on top right), shown as
solid curves, with corresponding tuning curves of their input units shown as dashed curves.
Tuning curves for hidden units were computed using the mean firing rates during simulation
at different testing stimuli (dots on curves). (b) Histogram of bias terms for hidden units.
(c) Histogram of bias terms for visible units. The cluster of values around -0.8 for hidden
units and that around -3.6 for visible units mostly came from units tuned to two ends of the
disparity distribution (large negative / positive disparities), which was due to a border effect
of the theory in Ganguli and Simoncelli [42].
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Fig. 2.5 Disparity association field. (a) disparity association field from unit 8 in the central
hypercolumn (column 1) to all other units in 5 hypercolumns (inset on top right; black for
column 1, and gray for all 5 but column 1), shown in a contour map of lateral connections. The
shapes of contour lines resemble those in the contour association field [40]. The horizontal
axis has two rows, first column index, and second distance to column 1; the vertical axis
has two columns, from left to right being the preferred disparity of units, and index of the
unit in its hypercolumn (1 to 16). (b) Inter-columnar connections from column 1 to 8 nearby
columns. Each curve shows the average connections between one unit in column 1 to unit
of a certain index in other 8 columns (inset on right; black for column 1, and gray for other
8). The curve for unit 8 in the central column is highlighted for clarity. Its value at, say,
index = 9 is the average of connections from unit 8 in the central column to every unit 9
in surrounding 8 columns, and so on. (c) Inter-columnar connections from column 1 to 16
columns further away (inset on right). The connections were generally weaker than those in
the panel above, due to longer distances between columns. (d) Intra-columnar connections
within column 1 (inset on right), with the curve for unit 8 highlighted for clarity. Units of
very similar tunings tended to facilitate and help each other, but units of different tunings
would inhibit each other.
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Fig. 2.6 Comparison of connectivity in Marr and Poggio [92]’s model and in our Boltzmann
machine model, in terms of scatter plot of connection vs. tuning similarity between neurons.
(a) Schematic of Marr and Poggio [92]’s model, with negative intra-columnar connections
between all neurons of different tunings (blue), and positive inter-columnar connections only
between neurons of the same tuning (red). (b) Intra-columnar connections of our model. (c)
Inter-columnar connections of our model. The tuning similarity between pairs of hidden
units is defined as the Pearson’s correlation coefficient between their tuning curves measured
from the model simulation (Section 2.2.2 of Zhang et al. [158]).
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2.2 Convolutional neural network models of V1 responses
to complex patterns

In this study, we evaluated the convolutional neural network (CNN) method for modeling V1
neurons of awake macaque monkeys in response to a large set of complex pattern stimuli.
CNN models outperformed all the other baseline models, such as Gabor-based standard
models for V1 cells and various variants of generalized linear models. We then systematically
dissected different components of the CNN and found two key factors that made CNNs
outperform other models: thresholding nonlinearity and convolution. In addition, we fitted
our data using a pre-trained deep CNN via transfer learning. The deep CNN’s higher
layers, which encode more complex patterns, outperformed lower ones, and this result was
consistent with our earlier work on the complexity of V1 neural code. Overall, we believe
this study is the first one that systematically evaluates the relative merits of different CNN
components in the context of modeling V1 neurons. We demonstrated that key components
of the CNN (convolution, thresholding nonlinearity, and pooling) contributed to its superior
performance in explaining V1 responses. Our results suggests that that there is a high degree
of correspondence between the CNN and biological reality.

2.2.1 Introduction

There has been great interest in the primary visual cortex (V1) since pioneering studies
decades ago [60, 58, 59]. V1 neurons are traditionally classified as simple and complex
cells, which are modeled by linear-nonlinear (LN) models [52] and energy models [1],
respectively. However, a considerable gap between the standard theory of V1 neurons and
reality has been demonstrated repeatedly, at least from two aspects. First, although standard
models explain neural responses to simple stimuli such as gratings well, they cannot explain
satisfactorily neural responses to more complex stimuli, such as natural images and complex
shapes [27, 140, 53, 77]. Second, more sophisticated analysis techniques have revealed richer
structures in V1 neurons than those dictated by standard models [118, 13]. As an additional
yet novel demonstration of this gap, using large-scale calcium imaging techniques, we
[84, 134] have recently discovered that a large percentage of neurons in the superficial layers
of V1 of awake macaque monkeys respond strongly to highly specific complex features;
this finding suggests that some V1 neurons act as complex pattern detectors rather than
Gabor-based edge detectors as dictated by classical studies [63, 28].

While our previous work [134] has shown the existence of complex pattern detector
neurons in V1, a quantitative understanding of the relationship between input stimuli and
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neural responses for those neurons has been lacking. One way to better understand these
neurons quantitatively is to build computational models that predict their responses given
input stimuli [149]. If we can find a model that accurately predicts neural responses to
(testing) stimuli not used during training, a careful analysis of that model should give us
insights into the computational mechanisms of the modeled neuron(s). For example, we can
directly examine different components of the model [95, 94, 111], find stimuli that maximize
the model output [71, 98], and decompose model parameters into simpler, interpretable parts
[115, 104].

A large number of methods have been applied to model V1 neural responses, such
as ordinary least squares [136, 27], spike-triggered average [136], spike-triggered covari-
ance [137, 118], generalized linear models (GLMs) [67, 107], nested GLMs [94], subunit
models [143], and artificial neural networks [111]. Compared to more classical methods,
convolutional neural networks (CNNs) have recently been found to be more effective for
modeling retinal neurons [71] and V1 neurons in two studies concurrent to ours [95, 11]. In
addition, CNNs have been used for explaining inferotemporal cortex and some other areas
[150, 79, 151]. Nevertheless, existing studies mostly treat the CNN as a black box without
analyzing much the reasons underlying its success relative to other models, and we are trying
to fill that knowledge gap explicitly in this study.

To understand the CNN’s success better, we first evaluated the performance of CNN
models, Gabor-based standard models for simple and complex cells, and various variants of
GLMs on modeling V1 neurons of awake macaque monkeys in response to a large set of
complex pattern stimuli [134]. We found that CNN models outperformed all the other models,
especially for neurons that acted more like complex pattern detectors than Gabor-based edge
detectors. We then systematically explored different variants of CNN models in terms of
their nonlinear structural components, and found that thresholding nonlinearity and max
pooling, especially the former, were important for the CNN’s performance. We also found
that convolution (spatially shifted filters with shared weights) in the CNN was effective for
increasing model performance. Finally, we used a pre-trained deep CNN [126] to model
our neurons via transfer learning [11], and found that the deep CNN’s higher layers, which
encode more complex patterns, outperformed lower ones; the result was consistent with our
earlier work [134] on the complexity of V1 neural code. While some of our observations
have been stated in alternative forms in the literature, we believe that this is the first study
that systematically evaluates the relative merits of different CNN components in the context
of V1 neuron modeling.
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2.2.2 Stimuli and neural recordings

2.2.2.1 Stimuli

Using two-photon calcium imaging techniques, we collected neural population data in
response to a large set of complex artificial “pattern” stimuli. The “pattern” stimulus set
contains 9500 binary (black and white) images of about 90 px by 90 px from five major
categories: orientation stimuli (OT; bars and gratings), curvature stimuli (CV; curves, solid
disks, and concentric rings), corner stimuli (CN; line or solid corners), cross stimuli (CX;
lines crossing one another), and composition stimuli (CO; patterns created by combining
multiple elements from the first four categories). The last four categories are also collectively
called non-orientation stimuli (nonOT). See Figure 2.7 for some example stimuli. In this
study, the central 40 px by 40 px parts of the stimuli were used as model input as 40 pixels
translated to 1.33 degrees in visual angle for our experiments and all recorded neurons had
classical receptive fields of diameters well below one degree in visual angle around the
stimulus center [134]. The cropped stimuli were further downsampled to 20 px by 20 px
for computational efficiency. Later, we use xxxt to represent the t-th stimulus as a 20 by 20
matrix, with 0 for background and 1 for foreground (there can be intermediate values due to
downsampling), and x⃗xxt to denote the vectorized version of xxxt as a 400-dimensional vector.

2.2.2.2 Neural recordings

The neural data were collected from V1 superficial layers 2 and 3 of two macaque monkeys
A and B. For monkey A, responses of 1142 neurons in response to all 9500 (1600 OT and
7900 nonOT) stimuli were collected. For monkey B, responses of 979 neurons in response to
a subset of 4605 (800 OT and 3805 nonOT) stimuli were collected due to time constraints.
Each stimulus was presented for 5 repetitions for both monkeys. During each repetition, all
recorded neurons’ responses in terms of ∆F/F were collected. Later, we use rn

t,i to denote
the neural response of the n-th neuron for the t-th stimulus in the i-th trial (i = 1, . . . ,5), rn

t

to denote the average neural response over trials, and r⃗rrn to denote all the average neural
responses for this neuron as a vector. Specifically, we have n = 1, . . . ,1142, t = 1, . . . ,9500
for monkey A and n = 1, . . . ,979, t = 1, . . . ,4605 for monkey B.

Cell classification The recorded neurons in the neural data had mixed tuning properties
[134]: some acted more like complex pattern detectors, some acted more like simple oriented
edge detectors, and some had weak responses to all the presented stimuli. To allow cleaner
and more interpretable model comparisons, we evaluated model performance for different
types of neurons separately (Section 2.2.5). For example, when comparing a CNN model
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and a GLM, we computed their performance metrics over neurons that were like complex
pattern detectors and those more like simple edge detectors separately, as it is possible
that neurons of different types are modeled best by different model classes. To make such
per-neuron-type comparison possible, a classification of neurons is required. Here we use
the neuron classification scheme in Tang et al. [134]. First, neurons whose maximum mean
responses were not above 0.5 (maxrn

t ≤ 0.5) were discarded as their responses were too weak
and might be unreliable; then, among all the remaining neurons that passed the reliability
test, neurons whose maximum mean responses over nonOT stimuli were more than twice
of those over OT stimuli (

maxrn
t1

maxrn
t2
> 2, where t1 and t2 go over all nonOT and OT stimuli

respectively) were classified as HO (higher-order) neurons and the others were classified
(conservatively) as OT neurons; finally, all the HO and OT neurons were further classified
into subtypes, such as curvature neurons and corner neurons, based on ratio tests similar
to the one above—for example, an HO neuron was additionally considered as a curvature
neuron if its maximum response over curvature stimuli was more than twice of that over
non-curvature stimuli. Overall, ignoring the unreliable ones, at the top level, there were OT
neurons and HO neurons; OT neurons were further classified as classical and end-stopping
(neurons that responded well to short bars but poorly to long ones) neurons; HO neurons
were further classified as curvature, corner, cross, composition, and mixed (neurons that
failed ratio tests for all the four types of nonOT stimuli) neurons. Figure 2.12 shows example
neurons of different classes.

2.2.3 Methods

Here, we describe three classes of models for modeling V1 neurons in our data set. All the
models explored in this study can be considered variants of one-hidden-layer neural networks
with different constraints and components. By considering them in the framework of one-
hidden-layer neural networks (Section 2.2.3.4), we can easily identify key components
that make CNNs perform better. In addition, all the methods here model each neuron
separately (no parameter sharing among models fitted to different neurons) and the numbers
of parameters of different models are kept to be roughly the same if possible; the parameter
separation and equality in model size ensure a fairer comparison among models. For each
neuron n from some monkey, all our models take image xxxt of size 20 by 20 as input and
try to predict the neuron’s mean response rn

t of image t as output. See Section 2.2.2 for an
explanation of the notation.
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Fig. 2.7 Top “Pattern” stimulus set. Stimuli are arranged in rows, each row showing 10
randomly drawn stimuli for each of the five categories (see the bottom right corner of each
row). Only the central 40 px by 40 px parts of stimuli are shown. Refer to Tang et al. [134]
for details. Bottom A subset of curvature and line stimuli in the stimulus set, ordered by
stimulus parameters (curvature, length, and orientation). Only the central 40 px by 40 px
parts are shown.

2.2.3.1 CNN models

A CNN model passes the input image through a series of linear-nonlinear (LN) operations—
each of which consists of convolution, ReLU nonlinearity [80], and (optionally) max pooling.
Finally, outputs of the final LN operation are linearly combined as the predicted response of
the neuron being modeled. Our baseline CNN model for V1 neurons is shown in Figure 2.8,
with one (convolutional) layer and 9 filters. Given a 20 by 20 input, it first convolves and
rectifies (“convolve + threshold” in the figure) the input with 9 filters of size 9, yielding 9
feature maps (channels) of size 12 by 12, one for each filter. Then max pooling operation
(“max pool” in the figure) is performed for each feature map separately to produce 9 pooled
feature maps of size 4 by 4. Finally, all the individual output units across all the pooled
feature maps are linearly combined (“linear combination” in the figure), plus some bias, to
generate the predicted neural response.

As shown in Table 2.2 of Section 2.2.4.1, apart from the baseline model with 9 channels
(B.9 in the table), we also explored other CNN models with the same overall architecture but
different numbers of channels.
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Fig. 2.8 The architecture of our baseline CNN model (or B.9 in Table 2.2). Given a 20 by
20 input image (40 by 40 downsampled to half; see Section 2.2.2), the model computes
the predicted neural response in three steps. In Step 1 (“convolve + threshold”), the model
convolves and rectifies the input to generate an intermediate output of size 12 by 12 by 9
(height, width, channel; 3D block in the middle); concretely, for each of the model’s 9 filters
of size 9 by 9 (kernel size), the model computes the dot product (with some bias) between
the filter and every 9 by 9 subregion in the input (red square being one example), rectifies
(x 7→ max(0,x)) all the dot products, and arranges the rectified results as a 12 by 12 feature
map; the process is repeated for each of the 9 filters (channels) and all the 9 feature maps
are stacked to generate the 12 by 12 by 9 intermediate output. In Step 2 (“max pool”), max
pooling operation is performed for each feature map separately to produce 9 pooled feature
maps of size 4 by 4; concretely, for each of the 12 feature maps obtained in Step 1, maximum
values over 6 by 6 subregions are computed every 2 data points (stride) and arranged as a 4
by 4 pooled feature map; the process is repeated for each of the 9 feature maps to generate
the 4 by 4 by 9 pooled output. In Step 3 (“linear combination”), all the individual output
units across all the pooled feature maps are linearly combined plus some bias to generate the
predicted neural response. See Section 2.2.3.1 as well.

2.2.3.2 “Standard” Gabor-based models

Gabor filters are widely used in theoretical models of V1 neurons [28, 63, 26]. Therefore,
we tried to fit (relatively speaking) standard Gabor-based V1 models to our data as control.
We tried Gabor simple cell models, Gabor complex cell models, as well as their linear
combinations (Figure 2.9). Interestingly, to the best of our knowledge, such models were not
examined in the existing V1 data fitting literature in terms of their performance compared to
more popular ones such as GLMs. Check Section 3.2 of Zhang et al. [157] for details.

2.2.3.3 Generalized linear models

We consider the following set of Poisson generalized linear models [93, 103] with possibly
nonlinear input transformations: vanilla GLMs, Fourier power models [27], and generalized
quadratic models [105, 104] (Figure 2.10). We also tried Gaussian GLMs and they performed
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Simple cell model Complex cell model

Linear combination of
Simple and Complex cell models

S1 S2 C1 C2… …

Fig. 2.9 The architecture of Gabor-based models. A simple cell model (left) takes the dot
product of a Gabor filter and the input, and passes through the output through a half-wave
squaring nonlinearity. A complex cell model (middle) takes the dot products of two Gabor
filters with quadrature phase relationship, squares and sums the outputs. A linear combination
of simple and complex cell models (right) takes some linear combination of some simple cell
models (S) and some complex cell models (C). This figure is partially inspired by Figure 1 in
Rust et al. [118] and Figure 1 in Carandini et al. [13].

consistently worse than Poisson ones in our experiments. Note that the term “GLM” has been
used pretty loosely in the literature, and many models with similar structural components to
those in the CNN are considered GLMs by many. We want to emphasize that the purpose
of including GLMs in this study is not to compare CNNs and (all the variations of) GLMs
in terms of performance but to find key components that make CNN models outperform
commonly used models for V1 modeling. We call these models GLMs mainly because
they are often formulated as GLMs in the literature. See Section 2.2.3.4 for the connection
between CNNs and GLMs considered in this study. Check Section 3.3 of Zhang et al. [157]
for details.

2.2.3.4 Connections among CNNs, Gabor models, and GLMs

As mentioned in the beginning of Section 2.2.3, the three classes of models considered in this
study are connected and form a continuum as they all can be roughly formulated as vanilla
one-hidden-layer neural networks [9], or one-hidden-layer multilayer perceptrons (MLPs):

r̂(⃗xxx) =
C

∑
i=1

cizi(⃗xxx)+b, (2.3a)

zi(⃗xxx) = f (ai(⃗xxx)), (2.3b)

ai(⃗xxx) = ⟨⃗xxx, w⃗ww(i)⟩+bi. (2.3c)

A one-hidden-layer neural network computes the output r̂ given (vectorized) input
stimulus x⃗xx according to Eqs. (2.3). Overall, the output is a linear combination of C hidden
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Fig. 2.10 The architecture of generalized linear models. The raw input stimulus xxx is first
transformed into φ(xxx), where different φ(·) are used for different GLM variants (inside
the box). For vanilla GLMs, we use the identity transformation φI(·); for Fourier power
models, we use the Fourier power transformation φFP(·) (Section 3.3.2 of Zhang et al. [157]);
for generalized quadratic models, we use the localized quadratic transformation φQ(·,τ)
(Sections 4.3.2 and 3.3.3 of Zhang et al. [157]). The transformed input φ(xxx) is passed into a
linear function ⟨·, w⃗ww⟩+b and the output is exponentiated to give the predicted neural response.
For details on the localized quadratic transformation (φQ(·,τ) in the figure), see Section 4.3.2
and Figure 5 of Zhang et al. [157].

units’ output values zi as shown in Eq. (2.3a). Each hidden unit’s output is computed by
applying some nonlinearity (also called activation function) f on the pre-activation value of
the hidden unit ai as shown in Eq. (2.3b), and pre-activation value ai is a linear function of
input specified by weights w⃗ww(i) and bias bi as shown in Eq. (2.3c).

Gabor models can be formulated as MLPs with constraints that weights w⃗ww(i) must be
Gabor functions. A simple cell model is a MLP with one hidden unit and half-wave squaring
nonlinearity; a complex cell model is a MLP with two hidden units in quadrature phase
relationship and squaring nonlinearity; a linear combination of simple and complex cell
models is a MLP with multiple hidden units and mixed nonlinearities.

GLMs can be formulated as MLPs with an additional exponential nonlinearity on output.
A vanilla GLM is a MLP with one hidden unit and no nonlinearity (linear); a Fourier
power GLM is a MLP with multiple hidden units of fixed weights (Fourier basis functions)
and squaring nonlinearity; A GQM is a MLP with multiple hidden units and squaring
nonlinearity—the linear term in Eq. (5b) of Zhang et al. [157] can be absorbed into the
quadratic one as long as the quadraic coefficient matrix is full rank. Empirically, we found
the additional accelerating exponential nonlinearity to be unimportant for the modeling of
our data, as Poisson GLMs with the additional accelerating nonlinearity performed similarly
or marginally better, compared to Gaussian and softplus GLMs without such nonlinearity
(Supplementary Materials of Zhang et al. [157]).

A CNN can be formulated as a MLP with ReLU (x 7→ max(0,x)) nonlinearity and an
additional max pooling operation before the final output computation of Eq. (2.3b). Compared
to other models, a CNN has additional constraints among the weights of hidden units—shared
and spatially shifted in groups. For example, our baseline CNN can be considered as a MLP
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with 12×12×9 = 1296 hidden units, as each 9 by 9 filter in the CNN yields a feature map
of 12× 12 = 144 hidden units, and there are 9 filters in the CNN. For MLP hidden units
derived from a common feature map, filter weights are shared and spatially shifted; for
MLP hidden units derived from different feature maps, filter weights are independent. This
group-wise sharing of hidden unit weights in CNN models is not present in GLMs, which
we will compare in detail with CNNs in Section 2.2.5 as GLMs were the best-performing
non-CNN models in our experiments.

Table 2.1 gives a summary of different models in terms of their structures, under the
framework of one-hidden-layer neural network (or MLP). We classify nonlinearities into
thresholding (half-wave squaring and ReLU) and non-thresholding (squaring) ones, because
we found all the thresholding activation functions behaved essentially the same in our
experiments (Section 2.2.5.2) and we think that being thresholding or not may be the most
important aspect for a nonlinearity.

Table 2.1 Comparison of model structures for Gabor models, GLMs, and CNNs in the
framework of one-hidden-layer MLP. First two columns specify the model class and subclass.
The third column shows whether the models’ corresponding MLPs have multiple hidden units
or not. The fourth column shows the constraints among hidden units imposed by the models;
“independent” means weights for different hidden units can vary independently, “shared”
means weights for different hidden units are tied together (via convolution), “quadrature
phase” means weights of the hidden unit pair are in quadrature phase relationship (specific
to Gabor models), and “fixed” means weights are not learned but specified before training.
The fifth column specifies the nonlinearity (activation function), with “none” meaning no
nonlinearity (identity or linear activation function), and “mixed” meaning both thresholding
and non-thresholding nonlinearities. The last column specifies additional structures imposed
by the models.

Class Subclass Multiple units constraints among units nonlinearity additional structures

Gabor
simple No — thresholding weights are Gabor
complex Yes quadrature phase non-thresholding weights are Gabor
combination Yes independent mixed weights are Gabor

GLM
vanilla No — none exponential output
Fourier power Yes fixed (not learned) non-thresholding exponential output
GQM Yes independent non-thresholding exponential output

CNN — Yes independent + shared thresholding max pooling

2.2.4 Implementation Details

Here I just include the implementation details of CNN models for brevity; check Section 4 of
Zhang et al. [157].



2.2 Convolutional neural network models of V1 responses to complex patterns 25

2.2.4.1 CNN models

Detailed model architecture Table 2.2 shows all the three CNN model architectures we
evaluated against other models (Section 2.2.5), with the baseline CNN model (Figure 2.8)
denoted B.9 in the table. For a fair comparison between CNNs and other models (primarily
GLMs; Gabor models inherently have too few parameters), in addition to the baseline CNN
model B.9, we also evaluated two variants of the baseline model by changing its number of
channels. Overall, the three CNN models match the three classes of GLMs (Section 4.3 of
Zhang et al. [157]) in terms of model size.

Table 2.2 CNN model architectures explored in this work. Each row describes one CNN
model architecture, with the first column showing its name (B.n where n is the number of
channels), middle columns describing its computational components, and the last showing its
number of parameters. Each CNN model first passes the input image through three computa-
tional components shown in the table—convolution (conv), nonlinearity, and pooling—and
then linearly combine (“fully connected” in CNN jargon) output values of the pooling opera-
tion to give the model output. The baseline CNN (B.9) has its number of parameters shown
in boldface. The number of parameters is computed by adding the number of parameters
in the convolutional layer and that in the fully connected layer. For example, the baseline
model B.9 has 9× (9×9+1) = 738 parameters (9 for number of channels, 9 for kernel size,
and 1 for bias) for the convolutional layer, and 9×4×4+1 = 145 parameters (9 for number
of channels, 4 for pooled feature map’s size, and 1 for bias) for the fully connected layer,
resulting in 738+145 = 883 parameters.

Name conv nonlinearity pooling # of params

B.2
(kernel 9,
channel n)

ReLU
(max pool,
kernel 6,
stride 2)

197
B.4 393
B.9 883

2.2.5 Results

2.2.5.1 CNN models outperformed others especially for higher-order neurons

Figure 2.11 shows the performance of CNN models vs. others on explaining our V1 neural
data. Because the full stimulus set consists of different types of stimuli (OT, CN, CV, etc.;
see Section 2.2.2.1), and the full population of neurons for each monkey consists of two
subsets (OT neurons and HO neurons, which can be divided into finer subsets as well; see
Section 2.2.2.2) that responded very differently to different types of stimuli, we trained all
models using different stimulus subsets (“OT” stimuli and all stimuli; we also tried training
only on “nonOT” stimuli, and that gave similar results to using all stimuli), and evaluated
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each model in terms of its average CC2
norm (Section 3.6 of Zhang et al. [157]) averaged over

OT neurons and HO neurons (for results on finer subsets, see Section 2.2.5.2 and later). We
do not show results of HO neurons trained on OT stimuli, as HO neurons by definition did
not respond to OT stimuli well and the results might be unreliable.

We compare CNN models and other models at two different levels. At the individual
model architecture level (solid bars in Figure 2.11), we compare specific CNN architectures
(models with different numbers of channels) with Gabor models and GLMs. In this case, CNN
models with more channels worked better and they outperformed their GLM counterparts
(B.2 vs. Fourier power GLMs, B.4 vs. linear GLMs, and B.9 vs. GQMs; see Section 2.2.4.1)
across the board; GQMs had in general better performance than other GLMs, but still fell
behind CNNs by a large margin. Gabor models performed similarly to GLMs or worse, and
were outperformed by CNNs as well.

At the overall model category level (dashed lines in Figure 2.11), we compare CNN
models as a whole to Gabor models as a whole as well as GLMs as a whole. To do this, for
each model category, we constructed an “all” model for that category by choosing the best
performing model architecture (in terms of performance on validation data for CNNs and
GLMs, and in terms of performance on training data for Gabor models; testing data was
never used during the model selection) for each individual neuron. By comparing the dashed
lines, we have the following empirical observations about the three model classes.

CNNs outperformed other models especially for HO neurons with complex stimuli
When stimuli were the same, the relative performance gap between CNN and other models
was larger for HO neurons than OT neurons (middle and right columns of panels of Fig-
ure 2.11). For example, on Monkey A, the relative performance increase of the CNN over
the GLM increased from 34.2 % for OT neurons to 52.2 % for HO neurons. When neurons
to model were the same, the relative performance gap was larger for complex stimuli than
simple stimuli (left and middle columns of panels of Figure 2.11). For example, on Monkey
A, the relative performance increase of the CNN over the Gabor model increased from 27.3 %
for “OT” stimuli to 48.5 % for all stimuli.

Priors on Gabor models helped especially with limited data When the stimuli were
limited and simple, Gabor models outperformed GLMs, possibly due to the strong and
neurophysiologically reasonable prior on Gabor models that filter weights can be described
well by Gabor functions [63], and vice versa when the stimuli were relatively sufficient
and rich (leftmost column of panels vs. other panels of Figure 2.11). One may hypothesize
that multi-component Gabor models (multi ones) outperformed standard ones (complex
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and simple) mostly due to having multiple orientations; this was not true as shown in
Section 2.2.5.3.

Fig. 2.11 CNN models vs. others on explaining V1 neural data. Two rows of panels show
results for monkey A and monkey B respectively, and three columns of panels show how
models performed on different neuron subsets (“OT” and “HO”), evaluated on different
subsets of stimuli (“OT” and “all”). For each panel, the model performance is shown in
CC2

norm averaged over neurons in the neuron subset. For each category of models (cnn,
glm, etc.), solid bars show model performance of different specific model architectures, and
dashed lines (suffixed by _all) show the category’s overall “best” performance by taking
the best model architecture for each individual neuron (in terms of validation performance
for CNNs and GLMs and training performance for Gabor models). Boldface numbers are
the relative performance increases of the CNN classes over non-CNN classes (computed as
ratios between dashed lines minus one). For CNN models (red), check Table 2.2 for their
meanings. For Gabor models (blue), complex and simple mean complex cell and simple
cell models; multi.MsNc means linear combinations of M simple and N complex model(s).
For generalized linear models (green), linear means vanilla GLM; fpower means Fourier
power GLM; gqm.x (x being one of 0,2,4,8) means the quadratic GLM with locality x.

Finally, Figure 2.12 shows the fitting results of some neurons in different classes (see
Section 2.2.2.2); for CNN models, we also show the learned filters and visualization results
obtained by activation maximization [98]; these visualization results are images that activate
fitted CNNs most. In most cases, Gabor models and GLMs failed to predict the high-
responding parts of the tuning curves compared to CNNs.

In Supplementary Materials, we show that CNN models outperformed others even with
less amount of data; we also show additional results on CNN models, such as comparison
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Orientation CornerCurvature Cross Compositiona
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d

Fig. 2.12 Example neurons and their fitting results. For each of the five stimulus classes shown
in different columns, we show the following four pieces of information regarding the fitting
of a neuron that responded better to this class than the others (a-d). a The top 20 responding
stimuli of the neuron; b the fitted CNN fully connected output layer’s visualization results
(over 5 random initalizations) obtained by activation maximization [98] implemented in
keras-vis [78]; c the fitted CNN’s four 9 by 9 convolutional filters (each scaled by the
sum of squares of its associated weights in the fully connected layer); d the neuron’s fitting
results (over testing data) on three categories of models: CNN, Gabor and GLM, with model
performance in terms of CC2

norm given in the legends. As each category of models has
multiple variants or architectures, we roughly speaking picked the overall best one for each
category. We picked the 4-channel architecture B.4 for CNN, as it performed almost the
same as the baseline B.9 (Figure 2.11) and allows easier visualization and interpretation; we
picked multi.1s2c for Gabor, and gqm.4 for GLM as they performed overall better than
other variants. Check Figure 2.11 for the meanings of model names.

of different optimization configurations and comparison of different architectures (different
numbers of layers, different kernel sizes, and so on). We will focus on the one-convolutional-
layer CNN model B.9 with 883 parameters for the rest of this study, because its performance
was close to the best among all the CNN models we tried (Supplementary Materials) without
having too many parameters, and its one-layer architecture is easier to analyze than those of
similarly performing models.

2.2.5.2 What made CNNs outperform other models

As shown in Figure 2.11, the baseline CNN architecture alone (B.9) outperformed GLMs,
which were the best non-CNN models in this study, by a large amount, especially for
HO neurons. By comparing the row for the CNN and the rows for GLMs (particular
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Fig. 2.13 Detailed comparison of CNN variants, monkey A. a-c ten variants of the baseline
CNN (B.9), along with the “all” model for GLMs GLM_all (Figure 2.11) for reference.
In addition, four “all” CNNs, each of which constructed from CNN models with some
shared structural component (thresholding nonlinearity T, non-thresholding nonlinearity NT,
max pooling MAX, or average pooling AVG), are shown as well. CNN variants are named
X_Y where X and Y denote nonlinearity and pooling type, respectively (Section 2.2.5.2).
The organization of panels is the same as that in Figure 2.11, except that only results for
Monkey A are shown (see Figure 2.14 for Monkey B). Rows show different models, whose
performance metrics (mean CC2

norm) are decomposed into components of neuron subclasses,
denoted by different colors (legend on the right). For each model in some panel, the length
of each colored bar is equal to the average performance over that neuron subclass multiplied
by the percentage of neurons in that subclass, and the length of all bars concatenated is
equal to the average performance over all neurons. The baseline model has its name in
bold, and “all” models in italics. d,e Neuron-by-neuron comparison of the a CNN variant
with thresholding nonlinearity (HS_max) vs. one without (S_max) for OT neurons, all stimuli
(d) and HO neurons, all stimuli (e). For d, e, and f, performance metrics (mean CC2

norm)
are shown at corners, Pearson correlation coefficients between models are shown at the top
left, and regression lines for different neuron subclasses (colored solid) together with the
regression line over all neurons (black dashed) are shown at the bottom right (scaled and
shifted to the corner for clarity; otherwise these regression lines will clutter the dots that
represent individual neurons). f Comparison of two thresholding nonlinearities, for HO
neurons, all stimuli. Results with max pooling are shown, and average pooling gave similar
results.
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Fig. 2.14 Detailed comparison of CNN variants, monkey B. Check Figure 2.13.
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the row for the GQM, as GQMs overall performed better than other GLM variants) in
Table 2.1 (Section 2.2.3.4), we hypothesize that this performance gap was primarily due to
the structural components present in the CNN but not in GLMs we studied: thresholding
nonlinearity (ReLU), max pooling, and shared weights of hidden units (convolution). To
test our hypothesis, we explored different variants of our baseline CNN architecture B.9 in
terms of its structural components. The results on thresholding nonlinearity and max pooling
are given in this part, and those on convolution are given in the next part. While our GLMs
possess an exponentiation nonlinearity which is not present in our CNNs, we found that the
exponentiation gave little performance increase than without (Supplementary Materials).

To better understand the utilities of thresholding nonlinearity and max pooling, we
explored various variants of the baseline CNN architecture in terms of nonlinearity and
pooling scheme. Specifically, we tried all combinations of five different nonlinearities—
ReLU (R), ReLU followed by squaring (half-squaring, HS), squaring (S), absolute value (A),
linear (no nonlinearity, L)—and two different pooling schemes—max pooling (max), average
(mean) pooling (avg)—with other structural components unchanged. Thus, we obtained ten
different CNN variants (including the original one) and compared them with the “all” model
for GLMs (picking the best model architecture for each neuron), or GLM_all as reference.
Results are shown in Figure 2.13 and Figure 2.14, which have the same organization: panels
a-c show the performance of all explored models as before, but with CC2

norm over OT and
HO neurons decomposed into average CC2

norm for finer subsets inside OT and HO neurons
(Section 2.2.2.2) to examine model performance in more detail; panels d-f show the neuron-
by-neuron comparison of different pairs of models for highlighting. Overall, we have the
following observations (letters in the parentheses denote the panels used for highlighting
among d-f, if any).

• Thresholding nonlinearities outperformed non-thresholding ones (d,e).

• Thresholding nonlinearities performed similarly (f).

• No consistently better pooling type, but max pooling was more powerful in isolation.

• High correlation between per-neuron and average model performance (almost all
panels).

Thresholding nonlinearities outperformed non-thresholding ones Compared to GLMs
we explored in this work, one nonlinear structural component unique to CNNs is ReLU, a
thresholding nonlinearity. To understand the usefulness of thresholding nonlinearities in
general, we compared four CNN variants with thresholding nonlinearities (R_max, R_avg,



2.2 Convolutional neural network models of V1 responses to complex patterns 32

HS_max, HS_avg) with four without (A_max, A_avg, S_max, S_avg) and found that thresh-
olding (R, HS) in general helped. This can be seen at two levels. At the level of individual
architectures, those with thresholding generally performed better than those without (d, e,
and rows 5-8 from the top vs. 1-4 in a-c of Figures 2.13 and 2.14). At the level of model
categories, we combined all four thresholding models into one “all” model (T_all) and all
four non-thresholding ones as well (NT_all), using the same method as we constructed “all”
models in Figure 2.11; we found that thresholding helped as well. Our results suggest that
the recorded V1 neurons actually take some thresholded versions of the raw input stimuli
as their own inputs. There are at least two ways to implement this input thresholding. First,
neurons may have some other upstream neurons as their inputs, each upstream neuron with
its own thresholding nonlinearity as modeled in McFarland et al. [94], Vintch et al. [143].
Second, the thresholding may happen at the dendritic tree level, as suggested by Gollisch
and Meister [46].

Thresholding nonlinearities performed similarly While the two thresholding nonlinear-
ities (R and HS) showed better performance overall, we did not see much difference between
the two (f, and HS_max vs. R_max, HS_avg vs. R_avg in a-c of Figures 2.13 and 2.14). This
observation was consistent with Heeger [52], where the author claimed that these two types
of thresholding nonlinearities are both consistent with physiological data and the brain might
be using one as an approximation to implement the other.

No consistently better pooling type, but max pooling was more powerful in isolation
While thresholding nonlinearities showed better performance consistently than non-thresholding
ones as shown above, the results were mixed for two pooling schemes and depended on
nonlinearities, combinations of neurons and stimuli, and monkeys (rows 1-8 from the top,
as well as MAX_all vs. AVG_all that were constructed like T_all and NT_all above, in
a-c of Figures 2.13 and 2.14). We suspect such mixed results were due to the complicated
interaction between nonlinearity and pooling. In other words, the contributions of nonlinear-
ity and pooling to model performance do not add linearly. Still, we think max pooling is a
powerful computational component per se for modeling neural responses, as max pooling
alone without any nonlinearity performed comparably with many other models with pooling
and nonlinearity (L_max vs. others in a-c of Figures 2.13 and 2.14).

High correlation between per-neuron and average model performance Figures 2.13
and 2.14 show that different models performed differently. We found that the performance
increase/decrease of one model over another one seemed to be universal, rather than class-
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or neuron-specific. We can see this universality from several aspects when two models are
compared neuron by neuron (d-f of Figures 2.13 and 2.14). First, there was a high correlation
between the performance metrics of individual neurons (high Pearson correlation coefficients
r). Second, we performed linear regression on each neuron subclass as well as on all neurons
(colored solid lines and black dashed line in the lower right corner of each panel), and found
all regression lines were very close.

2.2.5.3 Convolution was more effective than diverse filters

Apart from thresholding nonlinearity and max pooling explored in Section 2.2.5.2, CNN
models have another unique structural component compared to other models in our study—
shared weights among hidden units via convolution—as shown in Table 2.1. In contrast,
other models with multiple hidden units (when these models are considered as MLPs; see
Section 2.2.3.4) often have hidden units with independent and diverse weights without
sharing (“independent” in Table 2.1). In this section, we explore the relative merits of these
strategies for relating weights of different hidden units—shared weights via convolution vs.
independent weights—in terms of model performance, not only for the CNN, but also for
other model classes. The results are shown in Figure 2.15, with similar layout to Figures 2.13
and 2.14. We have the following observations (letters in the parentheses denote the panels
used for highlighting).

• Multiple diverse filters alone did not help much (d vs. e).

• Convolution helped achieve better performance with the same number of parameters
(f).

Multiple diverse filters alone did not help much To examine the impact of having mul-
tiple filters with diverse shapes, we explored two classes of models: Gabor models and
CNN models. For Gabor models, we examined three single-filter variants—simple cell
model (Gabor_s), complex cell model (Gabor_c), and the “single-component” Gabor model
(Gabor_single) constructed from simple and complex cell models similarly to “all” models
in Figure 2.11—and one multi-filter variant—one simple two complex (Gabor_1s2c; other
multi-filter models performed worse as shown in Figure 2.11). For CNN models, we varied
the number of channels of the baseline CNN B.9 from 1 (B.1) through 18 (B.18).

While the multi-filter Gabor model outperformed both simple and complex cell mod-
els by a large margin (a-c,d of Figure 2.15), we found that the single-component model
(Gabor_single), which takes the better one of simple cell and complex cell models for
each neuron, worked almost as well as the multi-filter one (a-c,e of Figure 2.15). While
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there was still some performance gap between Gabor_single and the Gabor_1s2c, the gap
was relatively small and there was strong correlation between the two models in terms of
per-neuron performance (Figure 2.15e). For each neuron, we further compared the learned
filters of simple, complex, and multi-filter Gabor models, and found that in some extreme
cases, the learned multi-filter Gabor model was degenerate in the sense that it had its simple
component dominate its complex components or vice versa (Figure 2.15g; check the caption).

The results for one-channel CNN and the baseline 9-channel CNN are shown in the top
two rows of Figure 2.15a-c, and we found that the performance increase (around 20 % to
50 %) was not proportional to the increase in the number of parameters (around 800 %, or 99
vs. 883 parameters). See Figure 2.11 and Supplementary Materials for more results on the
model performance of CNN as we change the number of channels.

Convolution helped achieve better performance with the same number of parameters
As shown in the previous part, having multiple independent filters of diverse shapes was
not effective for increasing performance relative to the increase in model size it involved.
However, we found that convolution was much more effective, achieving better model
performance without increasing the number of parameters. To illustrate this, we compared
the baseline CNN’s average pooling (R_avg) variant, which linearly combines ReLU units,
with a multilayer perceptron consisting of one hidden layer of 40 ReLU units (MLP_40). To
make the two models match in the number of parameters, we performed principal component
analysis to reduce the input dimensionality for the MLP to 20; therefore the MLP has
40× (20+1)+40+1 = 881 parameters, roughly matching the CNN (883 parameters). The
CNN outperformed the MLP by a relatively large margin (a-c,f of Figure 2.15). We also
explored the trade-off between input dimensionality and number of hidden units for MLP,
with the number of parameters roughly fixed (Figure 2.15h); given roughly the same number
of parameters, the CNN, which has convolution, consistently outperformed MLPs of various
configurations.

One may argue that the (average) pooling, which was difficult to avoid in our experiments
as CNNs would otherwise have too many parameters, helped model performance as well;
while such interpretation is possible, it is also helpful to simply consider convolution and
pooling collectively as a modeling prior that helps neural response prediction with limited
number of parameters and training data. The effectiveness of convolution and pooling could
also be due to eye movements during neural data recording; as shown in our previous work
[134], the eye movement was in general very small (the standard deviation of the distribution
of eye positions during stimulus presentation was in general less than 0.05° in visual angle,
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or 0.75 px in the 20 px by 20 px input space of the CNN) for our data, and such interpretation
was less likely.
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Fig. 2.15 Convolution seemed more important than diverse filters. a-f Comparison of single-
vs. multi-component Gabor models (highlighted in d,e), comparison of single- vs. multi-
channel CNN models, and comparison of models with and without convolution (highlighted
in f). See Section 2.2.5.3 for details. These panels have similar formats to those in Figure 2.13.
g Learned single- (simple and complex) and multi-component (1s2c) Gabor models fitted
to a particular neuron’s data. This neuron was tuned to corners as shown in the top right part
of the panel. For the three models (left, middle, right), we show the learned filters (top) and
fitting results (bottom). Simple cell components are shown with red borders, and complex
cell components are shown with blue borders. For the multi-component model, we also show
the weights of different components at the top of filters. In this case, the multi-component
model was dominated by its simple component with weight 0.531, which was orders of
magnitude larger than the weights of its complex components. h Performance vs. number
of hidden units for MLP models. Vertical dashed lines denote the MLP model (MLP_40) in
panels a-c,f, and horizontal dashed lines show performance metrics of the CNN R_avg. Only
results for monkey A are shown and monkey B gave similar results.
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2.3 Relationships to the proposed work

The first study [158] has shown the feasibility of learning horizontal functional connec-
tivities among V1 neurons using the Boltzmann machine, a neural network model with
local horizontal recurrent computation components. This study has demonstrated that the
Boltzmann machine, which is inspired by neuroscience but often dismissed to be too abstract
and different from the real brain, is in fact a useful and viable model for conceptualizing
certain recurrent computations in the primary visual cortex. However, the model has many
hand-crafted designs and is difficult to be trained end-to-end on V1 neural data at scale. The
proposed study will try to incorporate recurrent computation components into standard CNNs
with feedforward connections and learn two types of connections together in an end-to-end
fashion to explain more V1 data and phenomena.

The second study [157] has established a correspondence between the (feedforward)
CNN and biological reality in the context of V1 modeling by systematically evaluating and
dissecting different CNN components. While this project is not directly related to recurrent
circuits, it has demonstrated that predicting neural responses to natural and complex stimuli
accurately is a useful objective metric for identifying neural network models with high
correspondence with biological reality; in addition, it has shown the usefulness of various
ablation, dissection, and visualization methods for comparing and understanding neural
network models of different architectures. The metric and methods in this study have laid the
foundations for developing and analyzing models with recurrent computation components in
the proposed work.



Chapter 3

Existing work relevant to the proposal

This chapter is not meant to be read directly; it mostly provides background knowledge for
the proposed work in Chapter 4.

3.1 Existing computational work on V1’s nCRF effects

As mentioned in Section 1.1, V1’s complex nonlinear response properties not predicted by
standard models are collectively called non-classical receptive field (nCRF) effects [160] in
this document. When carefully prepared artificial stimuli are used, V1’s complex response
properties (nCRF effects) can be classified into those that are triggered by stimuli shown
within the CRF alone—response saturation [123], cross-orientation suppression [16], and
contrast invariance in orientation tuning [127]—and those that are triggered by stimuli
shown in and outside the CRF simultaneously—end-stopping, surround suppression, and
surround facilitation; for a review, see Seriès et al. [124]. When natural stimuli are used,
V1’s nCRF effects result in a significant portion (no less than 50 %) of variance in V1 neural
responses left unexplained by most existing models [27, 77, 11]. Existing experimental
studies suggest that nCRF effects play an important role in V1 response to natural, complex
stimuli [141, 51, 23].

Existing studies on the computational mechanisms of V1 nCRF effects [16, 113, 17, 122,
124, 153, 130, 131, 23] can be broadly classified into three types according to the research
goals they have [124] as follows.

• What (functional): a mathematical (also called functional) description of the input-
output transformation from the input stimulus to the output neural response. The
main goal here is to predict the neural response given the stimulus as accurately as
possible using a mathematical model (linear regression, neural network, etc.). To
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be scientifically relevant, only those functional models involving relatively speaking
biologically plausible mechanisms will be considered; for example, given two models
that explain certain neural phenomena equally well, one that involves computation
mechanisms that are considered existent in the brain (addition, division, thresholding,
etc.) is more desirable than one involving less likely mechanisms (exponentiation,
logarithm, etc.).

• Why (normative): a justification of the existence of nCRF effects in the first place.
The main goal here is to understand why nCRF effects emerge given constraints of
the brain and natural scene statistics of the environment, and what roles these nCRF
effects play in visual information processing overall.

• How (mechanistic): a mechanistic, biophysical implementation of some functional
model of V1 nCRF effects. The main goal here to understand how the brain can
achieve the mathematical operations underlying nCRF effects using a neural circuit
with biologically realistic components.

In the following, I will give an overview of existing studies, especially those on functional
(what) and normative (why) models, as they are the primary research goals of this proposal.
Most existing studies assume that V1 neurons can effectively perform some reconstruction
of the input (Section 3.1.1) and they are the main inspiration for my proposed models in
Section 4.2.3.2; other studies are discussed briefly in Section 3.1.2.

3.1.1 Reconstruction-enabled studies

In most existing models of nCRF effects, model V1 responses can be used to reconstruct
the input stimulus. Specifically, given some input stimulus, the V1 responses of a (trained)
model can be transformed back to the input stimulus approximately. In other words, V1
encodes the input stimulus approximately via some invertible transformation.

Note that the reconstruction property of model V1 responses is derived from different
normative (why) assumptions in different lines of studies. In the sparse coding line of
studies [100], the normative assumption puts more emphasis on using sparsely active neurons
to reconstruct the input that occur frequently according to natural scene statistics; in the
predictive coding line of studies [113], the normative assumption puts more emphasis on using
neurons across different areas of the visual system to form a generative model (probability
distribution) of the input stimulus according to natural scene statistics so that neural responses
can be later used for visual inference in an analysis-by-synthesis approach; in the divisive
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normalization line of studies, the normative assumption, if any [145, 23], also assumes that
neurons form a generative model according to natural scene statistics.

At the functional (what) level, the transformation from input stimulus to V1 responses in
these studies can be implemented via some competition among model neurons. Various forms
of competition are ubiquitous in the brain [36, 14] and are of great research interest. While
the word “competition” suggests suppression among neurons, facilitatory effects sometimes
can also be explained by these models by suppression with less or negative strength.

Table 3.1 gives an overview of the existing reconstruction-enabled studies in terms of
their normative (why) assumptions and functional (what) implementations, and the following
sections describe these studies in more detail.

Table 3.1 Overview of existing reconstruction-enabled studies, in terms of their normative
assumptions (why neurons behave this way, in the perspective of visual information process-
ing), and their functional implementations (how to compute the response of model neurons
using relatively speaking biologically plausible mechanisms). Note that for each line of
studies, normative assumptions and functional implementations may come from different
original studies as the research develops. The references for the origins of different normative
assumptions and functional implementations are provided in the table.

Name Normative assumptions Functional implementations

Divisive normalization V1 neurons model the input
via a Gaussian scale mixture
model [145, 23]

Competition between a neuron
and its surround in the form of
division [15]

Predictive coding Neurons form a hierarchical
probabilistic model, encoding
residual errors between the in-
put and the predictable [113]

Divisive input modulation
[130, 131]

Sparse coding Sparsely active neurons recon-
struct the input linearly [100]

Pairwise competition [160];
pools of excitatory and in-
hibitory neurons [72]

3.1.1.1 Divisive normalization

Initially, divisive normalization is mostly a theory at the functional level to explain some
nCRF effects within the (classical) receptive field [15, 16], assuming a competition mecha-
nism between a neuron and its surrounding neurons in the form of division for computing the
neural response. In general, a neuron with some divisive normalization mechanism computes
the ratio between its own (intermediate) response and the summed responses of a pool of
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neurons [15]. Later on, the divisive normalization theory has been extended to explain nCRF
effects involving the surround [17, 125, 122].

At the normative (why) level, the divisive normalization operations used to explain
surround-related nCRF effects can be derived by modeling natural images using a Gaussian
scale mixture (GSM) distribution [145]. Furthermore, extensions of the GSM, such the
mixture of GSMs (MGSM), have shown that the divisive normalization operations for
surround-related nCRF effects should be context-dependent to better match neural data;
in particular, the strength of divisive normalization should be stronger when there is more
redundancy between the visual signal in the center and that in the surround and weaker when
there is less [21–23].

3.1.1.2 Predictive coding

Normatively, the predictive coding model [113] proposes that neurons across different visual
areas form a hierarchy that encodes the probabilistic distribution of natural stimuli, and
neurons from one area try to predict the input they receive. Functionally, neural responses
of each visual area are driven by possibly three types of cortical connections: feedforward
connections encoding the residual errors between the prediction made by the neurons and the
input, feedback connections encoding the prediction made by neurons of higher areas, as
well as lateral inhibitory connections among the competing neurons in this area.

The original predictive coding model [113] can explain nCRF effects such as end-stopping.
Later on, with additional nonlinearities and more biological computing rules such as divisive
input modulation [133], predictive coding models from [130, 131] are able to produce more
nCRF effects such as cross-orientation and surround suppression, as well as to produce other
tuning properties of V1.

3.1.1.3 Sparse coding

Sparse coding [101] has been initially proposed as a normative theory, hypothesizing that
information in the brain is represented by a relatively small fraction of neurons that are
simultaneously active. Various studies [100, 8, 139, 138] have shown that the receptive fields
of V1 simple cells are adapted to natural scene statistics following the sparse coding principle.
Apart from explaining V1 cells, the sparse coding theory has been shown to be consistent
with many other experimental studies as well [101, 141, 142, 29].

Functionally, the sparse coding theory can be implemented in various ways. One particu-
lar implementation [160] involving pairwise competition of model neurons in a dynamical
system has been shown to match physiological data well in terms of nCRF effects, both for
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individual neurons and at a population level. Other implementations are possible, such as hav-
ing separate populations of excitatory and inhibitory neurons [72]. However, the predictive
power of these alternative implementations on nCRF effects have yet to be demonstrated.

3.1.2 Other studies of V1 nCRF effects

Apart from the three types of studies examined above, V1 nCRF effects can also be derived
from other mathematical (functional) operations and normative principles. In Zetzsche and
Röhrbein [154], nCRF effects have been demonstrated in a two-layer neural network, which
has rectification nonlinearity and was optimized to reduce the dependencies among output
units. In Zetzsche and Nuding [153], model neurons with nCRF effects have been shown
to be selective to intrinsically two-dimensional (i2D) signals [152], which are the most
informative ones in natural scenes [153].

3.2 Existing work on using CNNs for neural data modeling

In recent years, neural network models have been used to study various visual areas. For
early visual areas, Boltzmann machine and its variants have found their success in modeling
population response patterns for ganglion cells [48, 121, 43] and predicting functional
connectivity of V1 disparity-tuned neurons [158]; convolutional neural networks (CNNs)
have recently been found to be more effective than more classical methods for modeling
retinal [71] and V1 neurons [95, 11, 73]. For higher visual areas, CNNs, especially deep
ones, have been used for explaining inferotemporal cortex (IT) [150, 79, 151]; they form
the only model class in computational neuroscience that can predict IT responses to novel
stimuli with reasonable accuracy [70].

There are at least two different ways to model V1 neurons and neural data in general
using (convolutional) neural network models: data-driven and transfer learning as described
in the following.

3.2.1 Data-driven approach

In the data-driven approach, neural network models are simply trained from scratch to fit
the neural data, using only input stimuli and their associated neural responses; this is the
approach taken in my recent study [157] and many other very recent ones [71, 95, 73]. For
CNNs, the data-driven approach using has been mostly applied to early visual neurons such
as retinal ganglion cells [95] and V1 neurons [71, 11, 73, 157]. Most studies use fairly typical
CNNs that have multiple convolutional blocks—each of which performs convolution that is
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optionally followed by nonlinear activation, batch normalization [61], and pooling—followed
by a fully connected readout layer (possibly with a nonlinearity layer at the very end of the
model) that linearly combines output features of the last convolutional block to get predicted
neural responses. All CNN models in the literature outperformed corresponding baseline
models such as linear-nonlinear (LN) models [19] and generalized linear models (GLMs)
[107].

3.2.2 Transfer learning approach

In the transfer learning (also called goal-driven) approach [11, 151, 79], there are two phases
of training for fitting neural data; in the pre-training phase, a neural network model is trained
on a task relevant to the function of neurons (e.g., training a deep CNN on image classification
for modeling IT neurons as in Yamins and DiCarlo [151]) using large-scale labeled data sets
such as ImageNet [116]; in the fine-tuning phase, outputs of fitted units in the trained model
are (linearly) combined as predicted neural responses. The transfer learning approach has
achieved most of its success in explaining neural data from higher visual areas such as V4
and IT [151, 69]; for fMRI data, the transfer learning approach provide effective models for
lower visual areas V1 through V3 as well [69].

3.3 Existing work on recurrent computation components
in neural data modeling

While there has been considerable success in predicting neural data using CNNs via data-
driven and transfer learning approaches (Section 3.2), there are two key structural components
missing in the CNNs typically used in existing studies: local horizontal recurrent connections
between neurons in the same area [65] and long-range feedback recurrent connections be-
tween neurons in different areas [39]. These connections greatly contribute to the complexity
of the visual system, and may be essential for the success of the visual systems in reality;
for example, there are evidences that recurrent connections are crucial for object recognition
under noise, clutter, and occlusion [102, 129, 112].

The usage of recurrent connections in neural network models is relatively new in both
artificial intelligence and neuroscience communities. In the artificial intelligence community,
feedback recurrent connections from higher layers of a CNN can help sharpen and refine
representations of lower layers [86, 12, 62] to achieve better image recognition performance
under occlusion and noise [146, 147, 159]; various neurally inspired neural network modules
with local horizontal recurrent connections [25, 88] have been shown to have similar or better
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performance than standard recurrent neural network modules, such as LSTM [55] and GRU
[20], in various tasks. In the neuroscience community, explaining neural data quantitatively
using neural networks with recurrent computation components is still in its infancy; Nayebi
et al. [97] have shown that deep CNNs with custom recurrent computation components can
explain dynamics of neural activity in V4 and IT better than feedforward CNNs, and Lotter
et al. [90] have shown that PredNet [91], a neural network model for video prediction based
the predictive coding principle [113] with bottom-up and top-down connections, is able to
capture a range of seemingly disparate phenomena observed in the visual cortex.



Chapter 4

Proposed work plan and preliminary
results

4.1 Overview

In the proposed final project, I plan to advance our understanding of recurrent circuits of the
primary visual cortex and the visual system in general, in a two-part investigation.

First (Section 4.2), I will try to find candidate models for recurrent circuits of V1,
by designing and evaluating different neural network models with recurrent computation
components for predicting V1 neural responses to natural images as well as predicting
other phenomena observed in V1 neurophysiology studies. The rationale here is that better-
performing models for V1 data may have more similarities to the biological reality [157, 151].
Compared to feedforward neural network models used in typical data-driven and transfer
learning methods (Section 3.2), the candidate models to be explored will feature new designs
from two complementary aspects: model architecture (recurrent vs. feedforward computation
components) and training methodology (loss functions, number of training phases, etc.).
Preliminary results show that models with these two new designs can perform as well as
state-of-the-art approaches with fewer parameters and less data (Section 4.2.3).

Second (Section 4.3), I propose to explain the role of recurrent computation components
in these high-performing models for explaining V1 data, by first simplifying models with
various model compression techniques without sacrificing much performance and then
analyzing the simplified models using various tools for neural network analysis as well
as existing knowledge about V1. In particular, I propose to use recurrent computation
components in my candidate models to 1) provide alternative and more-detailed explanation
of contextual modulation [23], a well-known phenomena in V1, and 2) explain familiarity
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effect in early visual areas [56], a newly found phenomena in V2 and early visual areas
in general. The end product of achieving any of the two above goals would be a valuable
contribution to NIPS or other high-profile neuroscience conferences and journals.

Overall, the proposed work will yield two deliverables. First, more interpretable recurrent
models that can predict V1 neural responses to natural images and various V1 phenomena
accurately will be developed. Second, correspondence between model components and
biological reality will be established, and new insights about the roles of recurrent circuits
in V1 and visual signal processing in general will be provided in the context of contextual
modulation and familiarity effect.

4.2 Part 1: finding candidate models for recurrent circuits
of V1

In this part of the proposed study, I will try to find candidate models for recurrent circuits of
V1, by designing and evaluating different neural network models with recurrent computation
components for predicting V1 neural responses to natural images as well as predicting
other phenomena observed in V1 neurophysiology studies. The rationale here is that better-
performing models for V1 data may have more similarities to the biological reality [157, 151].
Compared to feedforward neural network models used in typical data-driven [11, 73, 157]
and transfer learning [11] methods (Section 3.2), the candidate models to be explored will
feature new designs from the following two complementary aspects.

• Novel model architecture with recurrent computation components. As mentioned in
Section 3.3, two key structural components are missing in the CNNs typically used
in existing studies for fitting V1 data: local horizontal recurrent connections between
neurons in the same area [65] and long-range feedback recurrent connections between
neurons in different areas [39]. Recurrent computation components conceptually
corresponding to these structural components will be explored in the models to be
developed and evaluated.

• Better training methodology in terms of auxiliary tasks. and optimization schemes. As
discussed in Section 4.2.1, potential performance improvement is possible by com-
bining and enhancing the strengths of the standard data-driven and transfer learning
approaches without changing their feedforward model architectures. First, given that
V1 neurons are typically considered to process low-level image features such as ori-
ented edges, additional auxiliary or pre-training tasks, especially those self-supervised
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ones with less semantics information such as image reconstruction and video predic-
tion, might be used together with the standard supervised image classification task to
provide better constraints for learning feature representations useful for predicting V1
data; identifying auxiliary tasks useful for predicting V1 data will provide insights on
the role of V1 in visual information processing [151]. Second, there might be some
alternative optimization scheme that fuses the two-phase (pre-training followed by
fine-tuning) scheme used in the transfer learning approach and the one-phase (trained
from scratch) scheme used in the data-driven approach.

Visually, the two new designs focus on different and complementary parts of the model
training pipeline (Figure 4.1). See the caption for details.

Model architecture 
hyperparameters

Neural data Auxiliary data
(optional)

Optimizer

Loss functions 
and other 

optimization 
hyperparamet

ers

Trained model

Fig. 4.1 The model training pipeline for predicting neural data. Conceptually the trained
model is the output of an optimizer that takes four components as the input: model architec-
ture hyperparameters, neural data, optional auxiliary data, and optimization hyperparameters
such as loss functions (here loss functions are considered part of the optimization process,
not that of the model). The first new design (red) improves the model architecture component
by introducing recurrent computation components; the second new design (blue) improves
training methodology by changing optimization hyperparameters and optionally auxiliary
data.

To find candidate models for recurrent circuits of the primary visual cortex, I will develop
and test neural network models with recurrent computation components against feedforward
models on various V1 data sets under different metrics. Apart from measuring model
performance by the correlation between predicted and ground-truth V1 responses to natural
images [11, 73], I will also compare models under other metrics applicable to V1 data, in
particular surround modulation ratio [23] and familiarity suppression index [56], as they will
be investigated later on in the second part of the proposed study to understand the role of
recurrent circuits in V1. These performance metrics derived under different motivations and
from different data sets will put a strong constraint on plausible model architectures with
recurrent computation components for modeling V1 [151].
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4.2.1 Why fusing data-driven and transfer learning approaches with
better training methodology

While transfer learning [151, 79] has achieved great success in explaining neural responses
of IT area neurons (see Section 3.2 for details), this approach cannot completely replace the
simpler data-driven approach [157, 11] that trains models from scratch to fit V1 data. In
particular, across different studies on V1, there is no clear winner of the two approaches.

• In Cadena et al. [11], the transfer learning approach performed overall better1 than
the data-driven approach on V1 responses to rapidly changing sequences of natural
images.

• In Zhang et al. [157], the data-driven approach performed overall better (around 7.5 %
higher in terms of explained explainable variance; see Figure 11 of Zhang et al. [157])
than the transfer learning approach on calcium imaging data of V1 to a large number
of complex shapes [134].

• In the following baseline experiment (Section 4.2.1.1) on the V1 data [76] in Coen-
Cagli et al. [23], the state-of-the-art data-driven CNN [11, 73] performed better overall
(around 11.5 % higher in terms of raw Pearson correlation coefficient averaged over
neurons) but with mixed results on individual neurons, compared to my data-driven
approach on VGG networks [126].

• Finally, pre-training task in the standard transfer learning approach is limited to image
classification, which is not directly related to V1 neurons. Given that V1 neurons are
typically considered to process low-level image features such as oriented edges, I feel
additional auxiliary or pre-training tasks, especially those self-supervised ones with
less semantics information such as image reconstruction and video prediction, might
be used instead or together with image classification to provide better constraints for
learning feature representations useful for predicting V1 data.

Therefore, it would be desirable to combine and enhance the strengths of the two approaches
together in a single framework that would predict V1 responses with higher performance
than either of the two approaches above.

1While the authors considered the differences to be statistically insignificant (p = 0.09), I think the p-value
in this case was small and it would be smaller and become significant with more neurons in the data.



4.2 Part 1: finding candidate models for recurrent circuits of V1 49

4.2.1.1 Baseline experiment showing the potential usefulness of fusing data-driven
and transfer learning approaches

This experiment is designed to illustrate the insufficiency of the transfer learning approach
that achieves state-of-the-art results for IT neurons [151, 79]. Here, I compare the state-of-the-
art data-driven [11, 73] and transfer learning [11] approaches for modeling V1 data. In my
experiment, the data-driven CNN has an overall structure similar to that in Cadena et al. [11]
with three convolutional layers, a factored fully connected layer [73], and some changes in
kernel sizes of convolutional layers for adaptation to our data; the transfer learning approach
evaluated here is similar to that in Cadena et al. [11] with experiment details following those
in Zhang et al. [157]. For other experiment details, check Section 4.2.5.

Results Results are shown in Figure 4.2. Within the limit of my hyperparameter tuning, I
found that the data-driven approach performed better than the transfer-learning approach, but
the former did not outperform the latter consistently over each neuron; the results suggest
that fusing two approaches together may further improve the state-of-the-art performance for
predicting V1 responses.
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Fig. 4.2 Neuron-by-neuron comparison of a data-driven CNN (results averaged over 10 times
with different initialization seeds) and a transfer learning approach using a batch normalized
VGG16’s pool2 layer. Performance is measured in Pearson correlation coefficient and
average correlation coefficients over all neurons are shown at corners; for the data-driven
CNN, the standard deviation of the 10 average correlation coefficients obtained with different
seeds is also shown. For the transfer learning approach, other layers or VGG network variants
gave worse results.
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4.2.2 Proposed methods

Formally, all the explored models will be trained by minimizing the following cost function
for each input stimulus x⃗xx and its associated neural response vector r⃗rr, with respect to the
model parameter vector θ⃗θθ :

L(⃗θθθ ;⃗xxx,⃗rrr,⃗yyy(1), . . . ,⃗yyy(K)) = α0l0( f0(⃗xxx; θ⃗θθ),⃗rrr)+
K

∑
i=1

αili( fi(⃗xxx; θ⃗θθ),⃗yyy(i)). (4.1)

In Eq. (4.1), x⃗xx is the (vectorized) input stimulus; r⃗rr ∈ RM is the neural response vector for
the input stimulus for a data set of M neurons; y⃗yy(1), . . . ,⃗yyy(K) are the label vectors, which
are reduced to scalars for tasks like image classification and proper vectors for tasks like
image reconstruction and object detection, of K relevant auxiliary tasks; f0, f1, . . . , fK are
K + 1 neural network models that all take x⃗xx as input and outputs the predicted neural
response vector and the predicted output responses of the K auxiliary tasks, respectively,
with the parameter vector θ⃗θθ (partially) shared among K +1 models; likewise, l0, l1, . . . , lK
are K +1 loss functions that measure the differences between the predicted responses from
f0, f1, . . . , fK and the ground-truth labels r⃗rr,⃗yyy(1), . . . ,⃗yyy(K); α1, . . . ,αK are the weighting factors
for the K auxiliary tasks relative to the neural response loss term l0, which typically has
a trivial weighting factor of α0 = 1. Eq. (4.1) defines the optimization objective function
for a single input stimulus with its associated neural responses and labels; in practice, the
actual objective function to be optimized is the average of Eq. (4.1) over all stimuli in the
training data plus some regularization terms such as ℓ2 weight decay. In cases where some
stimuli are only available for the neural data or auxiliary tasks, e.g. transfer learning, the
terms corresponding to the missing stimuli are simply dropped.

Potential improvements on different terms of Eq. (4.1) will be explored in the proposed
study. The first new design, novel model architecture, will explore variations of f0, f1, . . . , fK ,
and the second new design, better training methodology, will explore variations of l0, l1, . . . , lK
and adjusting α0,α1, . . . ,αK as well as learning rates during training in some principled way.

The cost function presented in Eq. (4.1) fuses and extends standard data-driven and
transfer learning approaches. It is reduced to the standard data-driven approach if K = 0, and
it is equivalent to the standard transfer learning approach if we adopt a two-phase training
scheme, where we set the weight factor α0 for neural response loss term to be zero in the first
phase and later set the weight factors α1, . . . ,αK for auxiliary tasks to be zero in the second
phase.

Compared to the naive data-driven approach, my fused approach makes use of labels of
relevant auxiliary tasks as additional supervision signals during training, and these additional
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supervision signals may reduce the chance of overfitting, which is common for most neural
data sets that are relatively small due to technological limitations. Compared to the transfer
learning approach with pre-trained models on image classification, my fused approach has
two differences: first, my approach allows flexible training schemes that balance the neural
response loss term and auxiliary task terms in different ways (fixed α j’s in one phase, two sets
of α j’s in two phases, etc.), while the transfer learning approach minimize two sets of terms
separately in two phases; second, my approach generalizes the single image classification
task in common implementations [11, 151, 79] of the transfer learning approach to multiple
relevant tasks that jointly constrain the neural response prediction part of the model.

Table 4.1 Comparison of four different methods for predicting V1 neural data. For each
method, we list its model architecture and its associated auxiliary or pre-training tasks, if any.
In the “Architecture” column, “recurrent” means that the model has recurrent computation
components such as LSTM [55], and “semi-recurrent” means that the model has computation
components that are technically feedforward but can be roughly considered as performing
some recurrent computations unrolled over time. Check Figure 4.3 as well.

Method Architecture Auxiliary or pre-training tasks

Data-driven [11, 73, 157] in Section 4.2.1.1 feedforward —
Transfer learning [11] in Section 4.2.1.1 feedforward image classification; supervised
Models in Section 4.2.3.2 semi-recurrent image reconstruction; self-supervised
Transfer learning with PredNet [91] in Section 4.2.3.1 recurrent video prediction; self-supervised

Table 4.1 gives a summary of four different methods evaluated and compared in this
chapter for fitting V1 neural data in terms of auxiliary tasks used and model architectures.

I will preliminarily demonstrate the usefulness of recurrent computation components
and other alternative auxiliary tasks in Section 4.2.3. In particular, the first Experiment
(Section 4.2.3.1) used PredNet [91], which is trained on video data in a self-supervised
fashion, to fit V1 neural data in a transfer learning setting. Results show that PredNet
performed as well as VGG networks, which are used in state-of-the-art transfer learning
approaches, with fewer model parameters, less training data, and less supervision. Together
with the ability of PredNet for explaining many neural phenomena [90], the preliminary
results suggests the plausibility to develop compact recurrent models for explaining V1
neural responses to natural images and other V1 phenomena.

As shown in Figure 4.3, the four V1 modeling methods evaluated and compared here
(two in Section 4.2.1.1 and two in Section 4.2.3) are just four individual points in the vast
conceptually 2D space of model architecture and auxiliary task(s), with optimization scheme
(which is also to be explored) ignored. Other recently developed recurrent models, such as
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Fig. 4.3 Different methods for predicting V1 neural data visualized in the 2D space of model
architecture (horizontal axis) and auxiliary task(s) (vertical axis). Compare with Table 4.1.
Standard data-driven and transfer learning approaches are marked as red dots; newly tested
recurrent models in Sections 4.2.3.1 and 4.2.3.2 are marked as dark blue dots; untested new
recurrent models, CRCN [2], improved PredNet [3], and ConvRNN [97], are marked as
light blue dots; the ultimate goal of this proposal in terms of model searching is marked as a
light blue rectangle spanning multiple auxiliary tasks of multiple levels with highly recurrent
computation components.

CRCN [2], an improved PredNet [3], and ConvRNN [97], are also in this 2D space but their
usefulness for explaining V1 neural data have yet to be tested due to limited time.

The ultimate goal of this proposal (the rectangle in the far right of Figure 4.3) in terms of
model searching is to develop recurrent models that can be trained end-to-end to predict V1
neural responses accurately with constraints from multiple auxiliary tasks of different levels
of supervision and semantics information. These candidate models for recurrent circuits of
V1 will be analyzed and interpreted according to the proposed plan in Section 4.3.

4.2.3 Preliminary experiments and results

Here I will demonstrate the usefulness of recurrent computation components and other
alternative auxiliary tasks via two Experiments (Sections 4.2.3.1 and 4.2.3.2). The first
Experiment demonstrated the usefulness of recurrent models together with self-supervision
pre-training for predicting V1 responses in a transfer-learning setting; the second Experiment
demonstrated the usefulness of image reconstruction as an auxiliary task in a data-driven
setting. Notably, the first Experiment (Section 4.2.3.1) used PredNet [91], which is trained
on video data in a self-supervised fashion, to fit V1 neural data in a transfer learning setting.
Results show that PredNet performed as well as VGG networks, which are used in state-of-
the-art transfer learning approaches, with fewer model parameters, less training data, and
less supervision. Together with the ability of PredNet for explaining many neural phenomena
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[90], the preliminary results suggests the plausibility to develop compact recurrent models
for explaining V1 neural responses to natural images and other V1 phenomena.

4.2.3.1 Experiment 1: recurrent models trained with self-supervision performed as
well as feedforward ones in a transfer learning setting

As an initial test on the performance of recurrent models for explaining V1 data, I tested
PredNet [91] on the V1 data [76] in Coen-Cagli et al. [23]. The pre-trained L0 variant
PredNet in Lotter et al. [91], which was trained on video data in an unsupervised manner, was
used to extract feature representations of input stimuli. Each input stimulus was presented
to the network for eleven time steps (with the same input) and the network’s responses of
E and R units across four layers during time steps 2–11 were extracted, with eight feature
representations (four layers and two types of units) per time step for each input stimulus.
The V1 responses were fit with the extracted feature representations in a transfer-learning
approach similar to those in Section 4.2.1.1 and Zhang et al. [157].

As shown in Figure 4.4, PredNet2 performed similarly to VGG networks. The perfor-
mance parity between PredNet and VGG networks may be due to the recurrent computation
components in the former given that the tested PredNet has much fewer model parameters,
less training data, and less supervision than VGG networks. Together with the ability of
PredNet for explaining many neural phenomena [90], the preliminary results suggests the
plausibility to develop compact recurrent models for explaining V1 neural data.

4.2.3.2 Experiment 2: usefulness of image reconstruction as an auxiliary task in a
data-driven setting

Two-phase training paradigm The first experiment is designed to illustrate the usefulness
of image reconstruction as an alternative auxiliary task for modeling V1 data, with a two-
phase training paradigm like that of the transfer learning approach but without additional
labeled data (only images with associated neural responses in the neural data set are used
in the pre-training phase). While typical transfer learning implementations [79, 151] use
image classification as the pre-training task, other choices are possible for modeling V1
neurons, which presumably do not directly participate in object recognition as IT neurons
where transfer learning works best. One alternative choice to image classification is image
reconstruction, which is an essential optimization criterion in many unsupervised learning
studies on natural images [100, 82, 132, 113]. There are at least two sets of arguments

2the third layer’s R units, averaged across time steps 2–4 were used; adjacent layers and units showed similar
performance.
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Fig. 4.4 Neuron-by-neuron comparison of PredNet and VGG. The layout of the figure is
similar to that of Figure 4.2.

for using image reconstruction as an auxiliary task for modeling V1: first, most existing
studies on V1 nCRF effects (Section 3.1) assume conceptually that V1 neurons perform
some reconstruction of the input; second, V1 neurons are typically considered to process
low-level image features such as oriented edges [28], and image reconstruction intuitively
feels like a task that can be handled by V1 neurons better than image classification.

Overall, the model explored in this experiment is a one-convolutional-layer CNN, with
the parameters for the convolutional part initialized to those of a pre-trained model on sparse
coding, which performs well in explaining V1 nCRF effects [160]. See Figure 4.5.

In the pre-training phase (α0 = 0,α1 = 1 in Eq. (4.1)), a one-convolutional-layer sparse
coding network model was trained on a large set (100,000) of image patches of size 25 px
by 25 px cropped from images in the neural data set; the architecture of the model follows
Section 3 of Kavukcuoglu et al. [66], which is arguably the state-of-the-art feedforward model
for approximating the standard sparse coding. Given some input stimulus, the model passes
the input through a convolutional layer of 64 channels of 9 by 9 kernels, a tanh nonlinearity
layer, and a scaling layer in sequence to generate the approximate sparse representation
I of the input. Other experiment details, such as image preprocessing, follow those in
Kavukcuoglu et al. [66] as much as possible.

In the fine-tuning phase (α0 = 1,α1 = 0 in Eq. (4.1)), we attach the one-convolutional-
layer sparse coding network model in the pre-training phase with a batch normalization
layer [61], which handles feature scaling, a factored fully connected layer [73], and a soft-
thresholding nonlinearity layer x 7→ log(1+exp(x)) [73] (called softplus in Dugas et al. [35])
in sequence to generate the predicted neural responses. Model parameters that correspond
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to those in the sparse coding network model are initialized by the pre-trained model; all
parameters, instead of only additional parameters in the transfer learning approach, in
the model are optimized during training as in the naive data-driven approach. For other
experiment details, see Section 4.2.5.
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Fig. 4.5 Diagram of the proposed model in Experiment 2, two-phase variation. Check
Section 4.2.3.2 for details. The notation overall follow that in Eqs. (4.2).

Results With two phases of training, my model performed with an average correlation
coefficient of 0.4031±0.03, with the standard deviation computed over 5 different initializa-
tion seeds. For comparison, if the pre-training phase was dropped and the convolutional part
of the model was initialized randomly instead of by a pre-trained model, the performance
dropped to 0.3288±0.01. While right now I cannot make similar performance gains on a
CNN architecture similar to that in the standard data-driven method (Section 4.2.1.1, the
current results shows that image reconstruction can be used as an auxiliary task for modeling
V1 data in a data-driven setting. In addition, the pre-trained convolutional sparse coding
model is visualized in Figure 4.6.

(a) (b)

Fig. 4.6 Parameters in the learned pre-trained model. Panel (a) shows the learned convolu-
tional sparse coding dictionary, and panel (b) shows the feedforward kernels for approximat-
ing the sparse representation.
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One-phase training paradigm The second experiment is designed to illustrate the feasi-
bility of a simple one-phase end-to-end training paradigm as proposed in Eq. (4.1) with all
α j’s fixed throughout the training. Compared to the two-phase training paradigm used in
transfer learning and the previous two-phase experiment (Section 4.2.3.2), a one-phase train-
ing paradigm is conceptually simpler and requires less manual intervention of the training
process. Given some input stimulus, the model first passes the input through a convolutional
layer of channels of 9 by 9 kernels and a batch normalization layer to generate the inter-
mediate feature map. Then the feature map is processed through two routes: in the neural
response prediction route (blue in Figure 4.7), the model passes the intermediate feature
map through a factored fully connected layer and a soft-thresholding nonlinearity layer as in
the models of other experiments; in the image reconstruction route (red in Figure 4.7), the
model passes the intermediate feature map through a transposed convolutional layer (also
called deconvolutional layer in the literature) to invert the feature map back to the input
space, trying to reconstruct the input stimulus. Formally, for each vectorized image x⃗xx and its
associated neural response vector r⃗rr, the model minimizes the following Eq. (4.2a) that is a
special case of Eq. (4.1):

L(⃗θθθ ;⃗xxx,⃗rrr) = l0( f0(⃗xxx; θ⃗θθ),⃗rrr)+α∥ f1(⃗xxx; θ⃗θθ)− x⃗xx∥2
2, (4.2a)

I = BN(Conv(⃗xxx; θ⃗θθ); θ⃗θθ), (4.2b)

f0(⃗xxx; θ⃗θθ) = SoftPlus(FactoredFC(I; θ⃗θθ); θ⃗θθ), (4.2c)

f1(⃗xxx; θ⃗θθ) = ConvT(I; θ⃗θθ). (4.2d)

In Eqs. (4.2), the intermediate feature map I as in Eq. (4.2b) is shared between the neural
response prediction route f0 as in Eq. (4.2c) and the image reconstruction route f1 as in
Eq. (4.2d); finally, two routes are combined in Eq. (4.2a) with a weighting factor α ; l0 denotes
the Poisson loss function as used in Klindt et al. [73]; Conv,ConvT,FactoredFC,SoftPlus,BN
denote convolutional layer, transposed convolutional layer, factorized fully connected layer,
soft-thresholding nonlinearity layer, and batch normalization layer, respectively. For other
experiment details, see Section 4.2.5.

Results Results are shown in Figure 4.8. I tried different values for the weighting factor α

in Eq. (4.2a). As shown in Figure 4.8a, my models (α ̸= 0) outperformed the baseline (α = 0)
over a large range of values for α . In addition, the performance gain was also reflected in
the learned convolutional filters (Figure 4.8c vs. Figure 4.8b). While right now I cannot
make similar performance gains on a CNN architecture similar to that in the two-phase
variation, this performance gap should be non-essential, as both Experiments make use
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Fig. 4.7 Diagram of the proposed model in Experiment 2, one-phase variation. Check
Section 4.2.3.2 and Eqs. (4.2) for details.

of the same training data without using additional labeled data as in the transfer learning
approach. With additional improvements on the training procedure—using different learning
rates for different layers, dynamically adjusting the weighting factor along different stages
of training via some learning algorithm. etc.—an end-to-end one-phase training paradigm
should achieve comparable or better performance than the two-phase training paradigm in
Section 4.2.3.2. Overall, the current results are a proof-of-concept that image reconstruction
can be used as an auxiliary task for modeling V1 data under a one-phase training paradigm
in a data-driven setting.

4.2.4 Proposed work to do

Based on existing preliminary results, I plan to work in the following directions next, focusing
on those in Section 4.2.4.1.

4.2.4.1 High priority tasks

More recurrent model architectures under more metrics Existing neural network mod-
els with recurrent components [97, 90, 91, 23] have not been rigorously tested with V1
data under various metrics. I propose to test neural network models with existing or newly
designed recurrent computation components against feedforward models on various V1 data
sets under different metrics, such as correlation between predicted and ground-truth responses
[11, 73], surround modulation ratio [23] and familiarity suppression index [56]. In line with
goal-driven modeling in Yamins and DiCarlo [151], these metrics derived under different
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Fig. 4.8 Results of Experiment 2, one-phase variation. Panel (a) shows the results for different
values of the weighting factor α , and standard deviations were computed over 9 different
initialization seeds. Panels (b) and (c) visualize the convolutional layers for models with
α = 0 and α = 200, respectively.

motivations and from different data sets will put a strong constraint on plausiable model
architectures with recurrent computation components for modeling V1.

More demonstration on the usefulness of self-supervision tasks While PredNet under
a transfer learning setting showed competitive performance with the state of the art, the
currently experimented models that demonstrated the usefulness of image construction task
in a data-driven setting are clearly very simple and did not exihibit performance similar to
that of the state of the art. The effectiveness of image reconstruction or other auxiliary tasks
in data-driven, transfer learning, or other scenarios need to be further demonstrated.

Potential neuroscience insights of auxiliary tasks While using mutliple auxiliary tasks
may help neural prediction, it is also important to understand the relative contributions of
different auxiliary tasks to the learned feature representations. As discussed in Yamins and
DiCarlo [151], while feature representations learned by image classification generalize to
many other visual tasks [32], there may exist visual tasks requiring separate, independent
optimizations; these tasks may help us better understand the function of V1 and visual cortex
in general.

4.2.4.2 Others



4.2 Part 1: finding candidate models for recurrent circuits of V1 59

Alternative loss functions measuring the difference between the stimulus and the re-
construction The ℓ2 squared loss function used in Experiment 2 (Section 4.2.3.2) may be
replaced by other loss functions for better results. One possibility is to quantize the outputs
and use the cross-entropy loss used in multi-class classification problems; existing studies
show that ℓ2 squared loss tends to get more blurry results as the trained model tends to predict
the mean pixel intensity only [106, 31, 155]. Another possibility is to use some adversarial
losses [106, 33] inspired by generative adversarial networks [47]. Finally, loss functions that
capture perceptual distortions between images [5, 81] may be explored as well.

Other auxiliary tasks Other than image reconstruction, other auxiliary tasks that may be
more efficient for learning useful feature representations of the stimulus can be used, such as
cross-channel prediction [156], context inpainting [106], relative position prediction [30],
etc.

Multiple auxiliary tasks Doersch and Zisserman [31] has shown that having multiple
auxiliary tasks can improve performance for various visual tasks. What tasks to choose and
how to combine them in a unified model for improving neural response prediction (rather
than computer vision tasks) remain open questions.

Better optimization schemes Apart from the one-phase training scheme used in the data-
driven approach and the two-phase scheme used in the transfer learning approach, some
middle ground may exist between the two optimization schemes to better utilize supervision
from neural data and auxiliary tasks more effectively.

4.2.5 Data, model training, and evaluation details for certain experi-
ments

Data I used the V1 data [76] in Coen-Cagli et al. [23] for model evaluation. Specifically,
540 natural images, which contains 270 pairs of small (1° in visual angle) and large (6.7°)
ones, and the responses of 221 V1 neurons to these images were used to train and test
different models. The set of 540 images along with their associated neural responses is
split into training, validation, and testing sets in the proportions of 80%× 80% = 64%,
80%×20% = 16%, and 20%, as in Zhang et al. [157].

Model training The model training procedure follows that in Klindt et al. [73] as much
as possible. Poisson loss function is used to quantify the difference between predicted
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neural responses and ground-truth responses; other training details—optimizer, learning rate
scheduling, early stopping, additional regularizations, etc.—are mostly the same as those in
the publicly available code3 of Klindt et al. [73].

Evaluation The model evaluation procedure exactly follows that in Klindt et al. [73]; the
raw Pearson correlation coefficient is computed between the predicted neural responses on the
testing set and the ground-truth responses (averaged over trials) for each of 221 neurons, and
these 221 Pearson correlation coefficients are averaged to quantify the model’s performance
(the higher the better).

4.3 Part 2: analyzing and interpreting models

After getting high-performing neural network models with recurrent computation components
following the plan proposed in Section 4.2. I will first simplify these models and then analyze
them in detail, to explain the performance gain of neural network models with recurrent
computation components from the perspective of neuroscience and that of machine learning.

• Model simplification. While deeper and more complex models may achieve better
performance [97, 161], they are naturally more difficult to analyze. To make subsequent
analyses easier, I will first try to simplify models in various ways, such as by reducing
the number of layers and parameters [4, 114], sparsifying model parameters [49], and
replacing more complicated components like LSTM [55] with simpler ones such as
GRU [20] or non-recurrent components. The simplification process used should induce
no or little performance decrease [18].

• Model analysis. To understand models from both the perspective of neuroscience and
that of machine learning, visualization, dissection, and ablation methods [157, 98, 99]
will be applied to the simplified models that capture the essence of original ones; in
addition, I will try to map components of (simplified) models to those of neural circuits
[25, 88].

As mentioned in Section 4.1, I will focus on explaining the role of recurrent ciruits in
the following two phenomena. The end product of the proposed study would be a valuable
contribution to NIPS or other high-profile neuroscience conferences and journals.

• Alternative and better-performing explanation of contextual modulation in V1
responses to natural images. Contextual modulation is a well-known phenomenon

3https://github.com/david-klindt/NIPS2017

https://github.com/david-klindt/NIPS2017
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in V1 [124], and Coen-Cagli et al. [23] have tried explaining contextual modulation
for natural images, showing that a Gaussian scale mixture model involing some gating
mechanism explained the data better than typical divisive normalization models without
gating. However, while gating mechanism in general can be important for recurrent
circuits as shown in many studies [97, 25, 88], alternative gating mechanisms may
provide better prediction of the available data. In addition, the model introduced in
Coen-Cagli et al. [23] requires complex training procedures and is not useable for
modeling arbitrary V1 data.

• Explaining familiarity effect in early visual areas and its relationship to that in
higher visual areas. While familiarity effect [6] is a well-known phenomenon in
higher visual areas, recently our lab has found its existence in early visual areas (V2)
as well [56]; interestingly, in that study, the familiarity effect in early visual areas
emerged faster than that in higher ones. The results in that study suggest new theories
of familiarity effect, which is commonly attributed to higher visual areas such as
inferotemporal cortex (ITC). Existing models on familiarity effect [90, 87] do not
address the familiarity effect in early visual areas or its faster emergence than higher
visual areas.
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