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Bayesian theory has provided a compelling conceptualization for perceptual inference in the brain.
Central to Bayesian inference is the notion of statistical priors. To understand the neural mechanisms
of Bayesian inference, we need to understand the neural representation of statistical regularities in the
natural environment. In this paper, we investigated empirically how statistical regularities in natural
3D scenes are represented in the functional connectivity of disparity-tuned neurons in the primary visual
cortex of primates. We applied a Boltzmann machine model to learn from 3D natural scenes, and found
that the units in the model exhibited cooperative and competitive interactions, forming a “disparity asso-
ciation field”, analogous to the contour association field. The cooperative and competitive interactions in
the disparity association field are consistent with constraints of computational models for stereo match-
ing. In addition, we simulated neurophysiological experiments on the model, and found the results to be
consistent with neurophysiological data in terms of the functional connectivity measurements between
disparity-tuned neurons in the macaque primary visual cortex. These findings demonstrate that there is a
relationship between the functional connectivity observed in the visual cortex and the statistics of nat-
ural scenes. They also suggest that the Boltzmann machine can be a viable model for conceptualizing
computations in the visual cortex and, as such, can be used to predict neural circuits in the visual cortex
from natural scene statistics.
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1. Introduction

Natural scenes contain significant ambiguity. To resolve ambi-
guities and obtain a stable 3D percept of the world, the visual sys-
tem (as well as the whole brain) must perform inference,
integrating current sensory data with prior knowledge of the world
formulated from past experience. Therefore, (Bayesian) inference
has long been proposed as a fundamental computational principle
of the brain (von Helmholtz, 1896; Knill & Richards, 1996). In this
work, we attempt to address one of the key questions for under-
standing Bayesian inference in the brain, in the context of the pri-
mary visual cortex (V1): how might an internal model of natural
scenes—the Bayesian prior—be encoded in the brain?

To support visual inference, an internal representation of the
visual scenes requires encoding both the statistical regularities of
the boundaries and of the surfaces themselves. There have been
studies suggesting that the neural circuits in the primary visual
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cortex (V1) encode contour priors in the form of the contour asso-
ciation field (Field, Hayes, & Hess, 1993; Kapadia, Ito, Gilbert, &
Westheimer, 1995; Geisler, Perry, Super, & Gallogly, 2001; Elder
& Goldberg, 2002; Bosking, Crowley, & Fitzpatrick, 2002; Li &
Gilbert, 2002; Menz & Freeman, 2003; Samonds, Potetz, & Lee,
2009; Samonds, Potetz, Tyler, & Lee, 2013). Recent neurophysiolog-
ical evidence suggests that disparity-tuned neurons in the primary
visual cortex might form a recurrent network for stereo processing
(Samonds et al., 2009; Samonds et al., 2013). This network encodes
the statistical correlation of disparity signals in natural scenes,
complementing the contour association field, and is referred to
as the disparity association field. However, the neural mechanisms
by which statistical priors of boundaries and surfaces from the
environment can be learned are not well understood.

We hypothesize that the empirically observed neural connec-
tivity between disparity-tuned neurons in V1 can be predicted
from 3D natural scenes using a Boltzmann machine. To test this
hypothesis, we fitted a Boltzmann machine neural network model
(Hinton & Sejnowski, 1986) to disparity signals derived from 3D
natural scene data, and found that (1) learned parameters in the
model were consistent with connectivity constraints in stereopsis
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models (Marr & Poggio, 1976; Samonds et al., 2013); (2) the model
was consistent with neurophysiological data in terms of functional
connectivities among disparity-tuned neurons in V1 (Samonds
et al., 2009). The results provide further evidence in support of
the notion of the disparity association field, and demonstrate that
the Boltzmann machine is a viable model for describing cortical
computation in the sense that they can be used to predict func-
tional neural circuitry in the visual cortex.

The paper is organized as follows. In Section 2, we describe the
3D natural scene data and the Boltzmann machine model, as well
as the neurophysiological experiments for measuring functional
connectivities between pairs of neurons. In Section 3, we compare
the trained Boltzmann machine with computational models and
neurophysiological data. In Section 4, we discuss the potential
implications of this model and its limitations.

2. Methods
2.1. 3D scene data

We trained a Boltzmann machine to model the disparity signals
over a small visual field. These signals were derived from the
Brown Range Image Database (Huang, Lee, & Mumford, 2000). A
total of 200 K disparity image patches with a 2° half-width were
extracted from 172 images (54 forest, 49 interior, 69 residential).
The images in the Brown data set were captured by a scanner with
range at 2-200 m, and image resolutions were approximately 5
pixels per degree of visual angle.

Disparity image patches were generated from each range image
as follows (Fig. 1b). A random point in the range image was chosen
as the fixation point. Given the fixation point, the disparities at its
surrounding pixels were computed using the method in Liu, Bovik,
and Cormack (2008) (see Section 2.1.1 for detail). Finally, a dispar-
ity image patch with a 2° half-width was extracted 3° away from
the fixation point. This eccentricity was chosen to roughly match
the typical receptive field locations of recorded V1 neurons in
our earlier neurophysiological experiments.

2.1.1. Disparity computation

We used an optical model of the primate eye following Liu et al.
(2008) to compute disparity. In this model (Fig. 1a), each eye is
approximated as a perfect sphere centered at its nodal point, and
inter-pupillary distance is assumed to be 0.038 m with nodal
points at (—0.019,0,0) and (0.019,0,0) as in monkey physiology.

Consider some fixation point F = (x;,yy,z). Let O = (0,0,0) be
the midpoint between the two eyes. We assume all observations
are directed along the —z axis, or x; = y; = 0. The distance from
O. to F is then just z;. The horizontal disparity, d, of an arbitrary

point P = (x,¥,,2), is given by
=f =, (1)
o = 2 atan(—0.019/z), (2)
d) — atan (LOO]Q> — atan <L0019> (3)
Zp Zp

We made the simplifying assumption that fixations occur at any
point in the scene with uniform probability. This assumption is
supported by Liu et al. (2008), which shows that random fixations
roughly emulate the statistics of fixation, at least in natural scenes.
This assumption should not affect the basic conclusion of our
results.

2.2. Boltzmann machines

2.2.1. Interaction among neurons modeled by Boltzmann machines

The extracted disparity image patches reflect the prior of dis-
parity signals in the natural scene, and we modeled this prior by
fitting a Boltzmann machine to the patches. Boltzmann machines
(Hinton & Sejnowski, 1986) are a class of stochastic recurrent neu-
ral network models that can learn internal representations to
explain or generate the distribution of the input data, using pair-
wise connectivity between units to encode the structures of the
input data. Boltzmann machines are also a type of Markov random
fields, which are widely used in computer vision for solving a vari-
ety of early vision problems such as surface interpolation and
stereo inference (Geman & Geman, 1984; Koch, Marroquin, &
Yuille, 1986; Belhumeur & Mumford, 1992; Tappen & Freeman,
2003). We hypothesize that Boltzmann machines are a viable com-
putational model for understanding the circuitry of the visual cor-
tex, and we will examine if they can explain interactions among
neurons in other computational and neurophysiological studies
(Marr & Poggio, 1976; Samonds et al., 2009; Samonds et al.,
2013). Specifically, the interaction terms g (Eq. (4)) in our Boltz-
mann machine model were compared with existing computational
models in Section 3.2, and neurophysiological experiments were
simulated on the model (Section 2.2.2) to compare it with neural
data in Section 3.3.

The units in our Boltzmann machine model (Fig. 2a) are orga-
nized into a hidden layer and a visible layer, arranged in a spatial
5 by 5 grid of “hypercolumns” (in total C = 25 columns). Each
hypercolumn has a bank of M = 16 visible units that encode the
disparity input, and a bank of 16 corresponding hidden units h,
all sharing the same spatial receptive field location. The
N = MC = 400 hidden units are fully connected, each of them dri-
ven by its corresponding input visible unit. The collective spiking
activity at each bank of visible units encodes the disparity signal
at the corresponding hypercolumn.

This model is formally expressed as a probability distribution
over hidden and visible units:

P(h,v:a.B,7,%) f—exp (Zoch +Y Bijhih; +Z} ih; 1/&2/,7},)

i<j

(4)

In Eq. (4), h and » are binary vectors whose distributions are to
be captured by the model, representing spiking activities of hidden
and visible units. The other model parameters capture the distribu-
tions of h and v, as well as their interactions. Specifically, « and y
capture the baseline firing rates of hidden and visible units, § mod-
els the pairwise lateral interactions among hidden units, and 4
models the interactions between hidden and visible units. Z is a
normalization constant.

This Boltzmann machine was fitted by finding parameters
«, B, y, and 4 that maximize the probability of the model for gen-
erating the spike patterns », corresponding to the disparity signals
in the extracted patches. Formally, the following log likelihood was
maximized:

T

Zong ‘o, By, 4)

aﬁ7y’

Vo, By, 4). ()

In Eq. (5), »@’s are T binary spike patterns of the visible units
converted from the disparity signals based on the tuning curves
of the visible units (see Fig. 3 and Section 2.2.1.1). The likelihood

of observing » is computed as the sum of P(h", » v¥) over all pos-
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Fig. 1. (a) Diagram for calculating disparity. Adapted from Liu et al. (2008). See Egs. (1)-(3) for detail. (b) One sample range image from the Brown data set (upper) with
disparity values along one line in it (lower left), and two extracted disparity patches (lower right). In the upper image: red crosses, fixations points for two patches; yellow
crosses, center of patches; red long rectangle, the row shown disparities. Patches were 3° away from fixation and had a half-width of 2°.
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Fig. 2. Schematic of our Boltzmann machine model (a), distribution of extracted disparity values P(s) (b), and derived tuning curves of input visible units, with one curve
highlighted (c). (a) 25 “hypercolumns” laid in a 5 by 5 grid covering a 4° by 4° patch, with hidden units (h, black outline) in the same column grouped in dashed box. Each
hidden unit has connections (black) to all other ones, and one connection (red) to its own visible unit (, white outline). At most two hidden units and one visible unit drawn
per column, with many connections missing for clarity. Columns are numbered for reference in Section 3. (b) The distribution of extracted disparity values was sharp, and
peaked at zero. (¢) Tuning curves of » were derived based on Ganguli and Simoncelli (2010) with the following details: “baseline” curve was a t distribution with d.o.f. v = 2,
total expected firing rate (R in Ganguli and Simoncelli (2010)) was unity, and “infomax” optimization criterion was used. Only tuning curves between —1° and 1° are shown
for clarity. Given the sharp distribution of disparity values, the theory in Ganguli and Simoncelli (2010) made the tuning curves at large disparities different from those close
to zero. Instead of Gaussian-like (see Fig. 3a for a zoom-in view of tuning curves close to zero), the tuning curves at the two ends of the input distribution were relatively flat at
large (positive/negative) disparities, and dropped to zero near zero disparity. Interestingly, these were very similar to the near-tuned and far-tuned neurons in Poggio and
Fischer (1977) and Poggio et al., 1988. We also tried Gaussian distribution as the “baseline” curve, but that gave much sharper tuning curves and less co-activation between
dissimilar units, which resulted in a less biologically realistic training result.

sible 2V hidden unit patterns, which is the marginal probability for ~ 2.2.1.1. Conversion of disparity signals into binary spike pat-
the model to generate », regardless of the hidden units. Finally, ~ terns. From each disparity image patch i, disparity values
the log probability for the model to generate all the input spike S}, Sh,-..,St_ps corresponding to the locations of the 25 hyper-
patterns due to the disparity Signa]s is computed as the sum of columns were extracted, and the model was fitted to explain these
log probabilities for generating each particular spike pattern »®,  disparity values across all patches. Disparity signals are real-
The model was trained using contrastive divergence mean field valued, and must be converted into binary spike patterns, which
learning (Welling & Hinton, 2002). See Section 2.2.3 and Welling can be considered as the spiking activities of the bottom-up input
and Hinton (2002) for more detail. to V1 neurons. Following the approach of Ganguli and Simoncelli
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Fig. 3. Generation of training data for one disparity value. Given one disparity value (a) (in this case s = 0), we transformed it into M = 16 mean firing rates (b) using tuning
curves (between (a) and (b)), generated spike trains (c), and binned it into a binary matrix (d) as training data to the Boltzmann machine.

(2010), we derived a set of M = 16 tuning curves for visible units
(same for all the hypercolumns, Fig. 2¢) according to the distribu-
tion P(s) of extracted disparity values from all patches (Fig. 2b).
Each disparity value was converted to the mean firing rates of
M = 16 visible units based on their tuning curves.

Given the above derived tuning curves, for each patch, we first
converted the C = 25 disparity values into the mean firing rates of
the N = 400 visible units. Then for each of these N units, a spike
train of 200 ms was generated based on its mean firing rate using
an independent homogeneous Poisson process, and the whole
spike train was partitioned into 20 bins of 10 ms'. A “1” was
assigned to a bin of a unit if there were one or more spikes for that
unit within that time bin; otherwise, a “0” was assigned. The whole
generation process (for one disparity value) is schematically shown
in Fig. 3.

2.2.2. Simulation of neurophysiological experiments on the model

With the trained Boltzmann machine, we can simulate the neu-
rophysiological experiments by providing the visible units » with
specific experimental stimuli (Section 2.3.1), and collecting the
model response as binary spiking patterns of hidden units h.
Because a Boltzmann machine models the joint distribution of all
hidden and visible units, we can compute the model response by
sampling from the conditional distribution of hidden units given
the visible units:

N
P(h|v;a. B,y,4) = % exp (Z(Oﬁi + Zivi)hi + Zﬁijhihj>- (6)

i—1 i<j

After generating hidden unit activities h by drawing samples
from Eq. (6) (see Section 2.2.2.1 for detail), we compared h with
neural data (Section 3.3), in terms of functional connectivity using
methods described in Section 2.3.2.

2.2.2.1. Sampling of hidden unit activities given disparity stimu-
lus. Given the (real-valued) disparity values of the stimulus at
C = 25 hypercolumns, we first converted them into mean firing
rates for all input visible units according to the tuning curves. Then

1 Our implementation was written in terms of bins, with no notion of the physical
duration of each bin. We arbitrarily assumed each bin to be of 10 ms, for easier
comparison with neurophysiological data and other studies based on Ising models (a
type of Boltzmann machines).

we obtained each sample of h (a N-dimensional binary vector) in
the following MCMC fashion (Koller & Friedman, 2009).

1. Generate a » from the Poisson process described in Sec-
tion 2.2.1.1, based on mean firing rates of visible units.

2. Initialize h randomly, run Gibbs sampling for one step® based on
Eq. (6).

3. Collect the current h as a sample.

4. Start over from (1), but when in (2), initialize h with the previ-
ous sample.

20,000 samples were generated for each stimulus, and every
contiguous 100 samples were regarded as the model response in
a trial, with 100 samples between trials, resulting in 100 trials of
100 samples per stimulus®. In addition, before collecting the first
sample, we performed an additional 100 Gibbs sampling steps, as
“burn-in”.

2.2.3. More implementation details

For results shown in Section 3, 48,960 disparity patches® were
extracted from the Brown data set to train the Boltzmann machine
model, with distance between nearby hypercolumns set to 1°
(Fig. 2a). Data was taken in mini-batches of size 1000, and training

took 1000 epochs. A learning rate of 1 x 107* was used for learning
bias terms a and 7, and half of that for learning lateral connections .
Multiplicative weight decay of 1 x 1072 for g multiplied by the learn-
ing rate was used, and a momentum factor of 0.5 for first five epochs
and one of 0.9 for the rest were employed. Five iterations of mean
field updates were used per iteration, with damping parameter set
to 0.2. Because a, 7, and 4 offer too many degrees of freedom for

2 Here one step of Gibbs sampling is defined as in Koller and Friedman (2009), that
is, given the initial state of all hidden units hy, h,, ..., hy, we randomly choose one
unit h;, update it based on P(h;lh_;) (where —i means all but i), and do this update
sequentially for all N units. These N updates are collectively referred to as one step.

3 Given all 20,000 samples, samples 1-100, 201-300, 401-500, ..., 19,801-19,900
were collected as trials, and samples between them (samples 101-200, 301-400,
501-600, ...) were discarded. This yielded 100 samples per trial, and 100 trials per
stimulus.

4 These patches were from 49 interior images in the Brown data set, with 1000
patches per image. A total of 40 patches were dropped because they had missing
range data (thus disparity signals) for some hypercolumns. Other patches from
different parts of the data set such as forest scenes were also tried, with empirically
similar results, also shown in the Results section.
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the model fitting, we fixed 4 to be positive, all elements equal to 0.5
during training. This encouraged the resulting a and y to be negative,
and the hidden units to share the same preferred disparities as their
visible input units. If we did not constrain i, we found that the
learned a and y were positive, and the tuning curves of hidden units
would be inverted from those of visible units, both counter-intuitive.

2.3. Neurophysiological experiments

2.3.1. Neurophysiological data

We compared the predictions from the trained Boltzmann
machine with observations about the neural circuitry that we have
reported in previous papers, based on direct pairwise measure-
ments of neuronal spiking activities (Samonds et al., 2009), and a
recurrent neural circuit model that predicts neural responses bet-
ter than the feed-forward energy model (Samonds et al., 2013).

In these earlier experiments, we analyzed neural data recorded
using multi-electrode recording techniques from neurons in the
primary visual cortex of three awake behaving macaque monkeys.
For monkeys D and F, we used 4-8 tungsten in epoxy or glass
microelectrodes (Samonds et al., 2009), while for monkey I we
recorded from neurons using a chronically implanted multielec-
trode array with 96 channels (Samonds, Potetz, & Lee, 2012;
Samonds et al., 2013). The experimental protocols for these studies
were approved by the Institutional Animal Care and Use Commit-
tee of Carnegie Mellon University and in accordance with Public
Health Service guidelines for the care and use of laboratory
animals.

Stimuli were dynamic random dot stereograms (DRDS) pre-
sented for one second per trial while the monkey performed a fix-
ation task. Each DRDS defines a uniform fronto-parallel depth
plane (i.e. uniform disparity) inside a 3.5° visual angle aperture
window over the receptive fields of the neurons being recorded.
These stimuli were standard stimuli used to assess disparity tuning
of the neurons and were effective in driving disparity-tuned neu-
rons. The dynamic random dot stereogram (DRDS) was composed
of 25-percent black and white dots on a mean gray background
with a refresh rate of 12 Hz for dot patterns (monitor refresh
rate was 120Hz) at 11 disparities (+0.94°;+0.6 58°;+282°;
+0.188°;+£0.094°; 0°). Further details about the neurophysiological
experimental procedures are described in our previous works
(Samonds et al.,, 2009; Samonds et al.,, 2012; Samonds et al.,
2013).

2.3.2. Neurophysiological measures of interaction

We measured the functional connectivity between pairs of neu-
rons using a cross-correlation histogram (CCH) measure based on
standard methods (Aertsen, Gerstein, Habib, & Palm, 1989;
Samonds et al., 2009). The probabilities of joint spike occurrences
beyond chance at all possible lag times and all times from stimulus
onset were computed by measuring the observed probability of
joint occurrences and subtracting the expected joint occurrences,
which was the outer product of the peristimulus time histograms:

Cy(tr,t2) = (x(t1),¥(t2)) — (x(t1)) (¥(t2)), (7)

where x(t), y(t) were the spike trains of the two neurons
respectively.

The expected joint occurrences (x(t1))(y(t2)) account for the
stimulus-related response correlation assuming neurons are inde-
pendent. They were corrected for trial-to-trial changes in the firing
rate to remove potential slow sources of correlation that can lead
to apparent fast sources of correlation sometimes referred to as
an excitability correction (Gerstein & Kirkland, 2001; Brody,
1999; Ventura, Cai, & Kass, 2005; Samonds et al., 2009). This
two-dimensional cross covariance histogram was then normalized

by the square root of the product of the auto-covariance his-
tograms for the two neurons:

Dyftr ) = —— ) ®)
Cux(t1,t1)Cyy(t2, t2)

This produced a two-dimensional histogram of Pearson’s corre-
lation coefficients referred to as the normalized cross-covariance
histogram or the normalized joint poststimulus histogram. We
average this histogram across diagonals to produce a cross-
correlation histogram with respect to lag times between pairs of
neurons. We then computed the variance of our estimates by boot-
strapping with respect to trials (Efron & Tibshirani, 1994; Samonds
et al.,, 2009; Ventura, Cai, & Kass, 2005). The correlation measure-
ments were the areas under the half-height of the peaks of these
cross-correlation histograms for pairs of neurons with a central
peak (within 10 ms of 0 lag time) more than three standard devia-
tions above or below the cross-correlation histogram from 175 ms
to 375 ms lag time and for pairs of neurons where both neurons
had significant disparity tuning (1-way ANOVA, p < 0.01)
(Samonds et al., 2009). For the neurophysiological results shown
in this work (Fig. 8b,d,f), the input stimulus for each pair of neu-
rons was set to the the disparity at which the point-wise product
of two neurons’ tuning curves was at its maximum (Samonds
et al., 2009).

We also computed CCH measures for hidden unit activities gen-
erated from the simulation of the trained Boltzmann machine
model (Section 2.2.2). To compute CCH for each pair of hidden
units in the model, we set the input stimulus (equi-disparity stim-
ulus, with the same disparity value at all hypercolumns) to be at
the mean of the preferred disparities of their corresponding visible
units’. After collecting the samples (see Section 2.2.2.1 for detail),
we computed the CCH measure following the method described
above®, but using only the peak of CCH as the CCH measure of this
pair of units, since there was no synaptic delay issue in our Boltz-
mann machine model, given our simulation method.

3. Results

We mainly compared the model with existing computational
models in terms of connectivity constraints (Section 3.2), and neu-
rophysiological data in terms of functional connectivities (Sec-
tion 3.3). The model showed qualitative agreement in both
aspects. In the following comparisons, the hidden units correspond
to the disparity-tuned V1 neurons, likely realized in terms of the
complex cells in the superficial layer of V1 where there are exten-
sive horizontal axonal collaterals forming a recurrent network. The
visible units provide the bottom-up input to these V1 complex
cells, and they encode disparity signals which in the brain are com-
puted by combining monocular left and right eye simple cells
based on phase-shift or position-shift mechanisms (Fleet,
Wagner, & Heeger, 1996). The input from visible units, or the cor-
responding signals in the brain, are assumed to be “decorrelated”
across space when stimulus correlation is factored out (Ecker
et al., 2010). The prior of natural scenes is assumed to be captured
by the lateral connectivity among hidden units in the model or
among disparity-tuned V1 neurons in the brain. These intrinsic

5 We did this because the preferred disparities of hidden units were actually those
of their input visible units. See Fig. 4a for detail.

5 Since our model had N = 400 hidden units, we initially computed the CCH for all
400 x 399/2 = 79,800 pairs. Then we kept pairs whose CCH’s peak within 50 ms
(45 bins) of 0 lag time was more than 1.5 standard deviations above or below the CCH
from 300 ms to 600 ms (+30 to +£60 bins). We further removed pairs where at least
one unit responded to the input stimulus with firing rate less than half of its peak
response relative to its minimum response over all tested stimuli, resulting in 23,048
pairs shown in Fig. 8.
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horizontal connections can give rise to noise correlation and other
correlated activities among neurons (Smith & Kohn, 2008; Kelly,
Smith, Kass, & Lee, 2010; Cohen & Maunsell, 2009).

3.1. First order properties of learned hidden units

Fig. 4 shows typical tuning curves of the hidden units obtained
from the model simulation of neurophysiological experiments
(Section 2.2.2), and the distribution of bias terms «, 7. Hidden units
shared the same preferred disparity and the general shape as their
corresponding input visible units. The bias terms are negative,
indicating that the hidden units tend to fire sparsely.

3.2. Comparison with computational models in terms of connectivity
constraints

The learned lateral connections g among hidden units form
what we call the disparity association field, analogous to the
well-known contour association field for orientation-tuned neu-
rons (Field et al., 1993). The lateral connectivity, or the disparity
association field, observed in the trained Boltzmann machine
model is qualitatively in agreement with the cooperative and com-
petitive circuits predicted by Marr and Poggio (1976), and with the
recent model of Samonds et al. (2013) which has been successful in
more accurately accounting for neurophysiological data of
disparity-tuned neurons in V1.

We define the disparity association field of a hidden unit as the
set of lateral connections between it and other hidden units. Fig. 5a
illustrates the disparity association field of one unit tuned near
zero disparity in the center column of the 5 x 5 grid, showing its
lateral connections g to all other units in the network along a par-
ticular direction in the grid. The x-axis indicates different hyper-
columns or spatial locations, and the y-axis indicates units with
different disparity tunings.

The disparity association field learned by the Boltzmann
machine has a number of noteworthy features. First, in terms of
inter-columnar connections, i.e. connections between a unit
with units in other hypercolumns, units with the same or similar
disparity tunings tended to form positive connections across
hypercolumns (spatial receptive field locations) and units with
very different disparity tunings formed negative connections.
Fig. 5b and 5c show in greater detail how each unit in one hyper-
column was connected to units of various disparity tunings in
other hypercolumns. The dark bold line highlights that unit 8 in
one hypercolumn formed positive (excitatory) connections to
similarly tuned units (units 6, 7, 8, 9) in the other hypercolumns,
and negative (inhibitory) connections to units tuned to very dif-
ferent disparities. Second, in terms of intra-columnar connec-
tions, i.e. connections between units in the same hypercolumn,
units exhibited excitation for very similarly tuned units in the
same hypercolumn, but exerted a suppressive effect on units of
dissimilar tuning properties, as shown in Fig. 5d. These properties
of inter- and intra-columnar connections are roughly consistent
with the cooperation between neurons of similar disparities
across space (the so-called continuity constraint), and the compe-
tition among neurons of different disparities at the same spatial
location (the so-called uniqueness constraint) in Marr and
Poggio (1976)'s classical stereopsis model for solving the corre-
spondence problem.

However, the lateral connectivity exhibited by the Boltzmann
machine model was richer than that in Marr and Poggio (1976)’s
model. First, in terms of intra-columnar connections, in addition
to the negative (competitive) intra-columnar connections in Marr
and Poggio (1976)'s model (Fig. 7a, blue), our model also learned
positive intra-columnar connections among units of similar tun-
ings (Fig. 7b). In this aspect, our model is more consistent with

the model in Samonds et al. (2013), which assumes that the
intra-columnar interaction has a center excitatory (cooperation
between similar neurons) surround inhibitory (competition
between dissimilar neurons) profile. This profile is more biologi-
cally realistic than that of Marr and Poggio (1976), taking into
account the overlapping nature of tuning curves within a hyper-
column, and the model in Samonds et al. (2013) has been shown
to explain well the temporal evolution of a number of tuning prop-
erties of V1 disparity-tuned neurons.

Second, in terms of inter-columnar connections, Marr and
Poggio (1976)’s model only specifies positive inter-columnar con-
nections between neurons of the same tuning (Fig. 7a, red), implic-
itly making the strong assumption that the surfaces of the world
are all fronto-parallel. However, surfaces in natural scenes are
more diverse, characterized with a variety of surfaces such as
slants and tilts, convexities and concavities. This richness in natu-
ral scene surface structures likely induced the greater variety of
inter-columnar connectivity observed in our model (Fig. 7c) that
captures the 3D surface priors to a higher degree than connectivity
constraints made in the works of Marr and Poggio (1976) and
Samonds et al., 2013. Our model is likely more consistent with
more advanced computational models for stereopsis that take into
account slant, tilt, and curvature (Li & Zucker, 2010; Belhumeur &
Mumford, 1992; Prazdny, 1985).

The learned disparity association fields obviously depend on
training natural scene data. Fig. 6 shows the association field
obtained by training with data from forest scenes in the Brown
data set, with all other parameters unchanged. While the associa-
tion field along the horizontal direction was symmetrical (Fig. 6a),
the one along the vertical direction (Fig. 6b) was skewed, which
was not the case for the model trained with interior scenes dis-
cussed above (data not shown). This was because the lower parts
of forest images are nearer to the viewer than the upper parts,
due to the receding ground plane toward the horizon in the forest
depth images. This asymmetry along different directions is an
interesting prediction that can be tested experimentally.

3.3. Comparison with neurophysiological data in terms of functional
connectivity

We also compared our model with neurophysiological data in
terms of functional connectivities derived from CCH measures
(Sections 2.2.2 and 2.3.2), and they match qualitatively in three
aspects.

First, neurophysiological data in our earlier studies (Samonds
et al., 2009) suggested that functional connectivity between a pair
of disparity-tuned neurons varied as a function of tuning similarity
and the distance between the neuronal pair. Functional connectiv-
ity is often measured in terms of the peak of the cross-correlogram
(CCH peak) and alternatively the area under the CCH peak within a
certain (e.g. £10 ms) window (CCH measure). CCH peak tends to
reflect mono-synaptic connections, and CCH measure tends to
reflect effective connectivity between a pair of neurons via many
possible direct monosynaptic and indirect polysynaptic horizontal
or even recurrent feedback connections. Samonds et al. (2009)
found that CCH peak and CCH measure were both positively corre-
lated with tuning similarity (measured as the Pearson correlation
between the tuning curves), with CCH measure data shown in
Fig. 8b. On the other hand, the CCH peak was found to drop with
the distance between the centers of the receptive fields, i.e. nega-
tively correlated with RF distance within a visual angle of 1.5°.
However, the CCH measure remained relatively constant, i.e.
uncorrelated with RF distance within 1.5° (Fig. 8d). This suggested
that while the monosynaptic connections between neurons might
be fairly local, the effective connections between disparity-tuned
neurons are relatively extensive. Last, while functional connectivi-
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ties existed between neurons of a variety of tuning similarities at
close proximity, significant CCH measures could be observed
mostly between similarly tuned neurons with RF distance > 1°,
shown in Fig. 8f.

For comparison, Fig. 8a,c,e show the corresponding results from
the Boltzmann machine model. Since there was no synaptic delay
in our simulation method, the correlation measures (labeled as
CCH measure in Fig. 8a,c,e for consistency) we obtained from the
model were more comparable to the CCH measure, rather than
the temporally precise CCH peak in the physiological data. Indeed,
we found that the CCH measure positively correlated with tuning
similarity (Fig. 8a) but did not change with RF distance within
1.5° though it did drop gradually over a larger distance (Fig. 8c,
pairs with positive CCH measures). This is consistent with the lack
of drop in the CCH measure with RF distance in the neural data
within 1.5° as shown in Fig. 8d. The model predicted a drop in
the CCH measure over a larger RF distance but currently data on
long-range CCH measures between disparity-tuned neurons are

not available. However, similar studies by Smith and Kohn
(2008) on orientation-tuned neurons did show that the CCH mea-
sure dropped only beyond 2 mm in cortical distance between neu-
rons while the CCH peak dropped even at 0.5 mm. Thus, we
anticipate that the CCH measure between disparity-tuned neurons
will drop beyond 1.5° as our model predicted, but this remains to
be tested experimentally. For RF distance vs. tuning similarity
(Fig. 8e), units of similar tuning properties exhibited stronger pos-
itive functional connectivities than units of dissimilar tunings
when the distance between units became larger.

While all these are in general agreement with the neurophysio-
logical data, there were some differences. Most notably, the model
exhibited negative functional connectivities between pairs of units
of all distances and similarities (Fig. 8a,c), whereas the neural data
only showed positive connectivities. These differences were largely
due to the limitation of the more abstract Boltzmann machine in
approximating real neural circuits in both architecture and dynam-
ics as discussed in Section 4.2.
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4. Discussion
4.1. Linking 3D natural scenes and functional connectivity

By training a Boltzmann machine with 3D scene data and sim-
ulating neurophysiological experiments on it, this work provides a
link between the statistical structure of 3D natural scenes and the
measured functional connectivity among disparity-tuned neurons
in the primary visual cortex.

We show that certain characteristics of the observed functional
connectivity, such as its positive correlation with tuning similarity
(Fig. 8b), its decay over receptive field distance between neurons
(Fig. 8d), and the prevalence of long range excitatory connections
between similarly tuned neurons (Fig. 8f), can be predicted by a
Boltzmann machine model trained with natural scene data. The
cooperative and competitive connectivity among hidden units in
the model is in general agreement with the connectivity con-
straints in the classical computational model for stereopsis (Marr
& Poggio, 1976) and those in the recent neural circuit model of
(Samonds et al., 2013).

In previous studies on natural scenes, the learning of coopera-
tion between neurons usually relies on co-occurrence (Field
et al.,, 1993; Geisler et al., 2001; Elder & Goldberg, 2002; Sigman,
Cecchi, Gilbert, & Magnasco, 2001; Kriiger, 1998), with or without
additional supervision signals. Hebbian learning can be used to
wire up neurons whose encoded patterns co-occur frequently.
Competition is often specified manually or by some hypothetical
“anti-Hebbian learning rule”. Our work demonstrates that Boltz-
mann machines can provide a coherent computational framework
to learn facilitatory connections between disparity-tuned neurons
based on co-occurrence statistics of disparity signals, as well as the
intra-columnar inhibitory connections that implement the unique-
ness constraint in earlier computational models (Marr & Poggio,
1976), implemented with “handcrafted” negative connections.
Here, we show that if the visual cortex functions mathematically
in the manner of a Boltzmann machine or a Markov random field
in general, it can acquire these computational constraints—both
cooperative and competitive connections—in a unified framework
by learning an internal model to explain the input data it experi-
ences during development. The fact that the simulated functional
connectivity of the trained Boltzmann machine matches qualita-
tively with the observed functional connectivity between

disparity-tuned neurons (Section 3.3) suggests that the interac-
tions among disparity-tuned neurons might form a network, which
we call the disparity association field, that encodes the statistics of
3D natural scenes and serves as a prior for solving 3D perception
problems. It provides some support to the tantalizing hypothesis
that the visual cortex might be functioning like a generative model,
e.g. a Boltzmann machine or Markov random field, for statistical
inference (Lee & Mumford, 2003; Lee & Yuille, 2006; Lee, 2015).

There is compelling neurophysiological evidence that V1
disparity-tuned neurons are engaged in horizontal recurrent inter-
actions for disambiguation and surface filling-in (Samonds, Tyler, &
Lee, 2016). However, the precise biological mechanisms for imple-
menting the Boltzmann machine are not completely clear cur-
rently. For the facilitatory connections, Hebbian learning of
neurons driven by correlated stimulus signals has been demon-
strated in recent in vivo rodent experiments (Ko et al., 2011; Ko
et al., 2013). Inhibitory connections may be learned by long term
depression or hemostatic synaptic scaling mechanisms, and the
fairly spatially extensive inhibitory interactions in the model may
be implemented through global inhibitory neurons (see Section 4.2
for more discussion).

As an aside and clarification, we want to point out the differ-
ences between the functional connectivity (CCH) in neurophysiol-
ogy (Aertsen et al., 1989; Samonds et al., 2009) and the lateral
connection (B in Eq. (4)) in the Boltzmann machine, or other com-
putational models in general (Marr & Poggio, 1976; Samonds et al.,
2013). While they are visually comparable in our study (e.g.
Figs. 8a vs. 7c¢), they are mathematically different in nature: CCH
reflects correlation whereas g reflects partial correlation or inverse
covariance, one (approximately) being the inverse of the other
(Friedman, Hastie, & Tibshirani, 2008). The precise relationship
between them requires further investigation.

4.2. Limitations of the model

One notable discrepancy between the trained Boltzmann
machine model and the neural data mentioned in Section 3.3 is
that the model had many short-range and long-range negative
functional connectivities between hidden units, while the func-
tional connectivity measured between neurons tend to be positive
(Fig. 8a,c vs. Fig. 8b,d). There are two possible causes for the
discrepancy.
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Fig. 7. Comparison of connectivity in Marr and Poggio (1976)’s model and in our Boltzmann machine model, in terms of scatter plot of connection vs. tuning similarity
between neurons. (a) Schematic of Marr and Poggio (1976)’s model, with negative intra-columnar connections between all neurons of different tunings (blue), and positive
inter-columnar connections only between neurons of the same tuning (red). (b) Intra-columnar connections of our model. (c) Inter-columnar connections of our model. The
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First, the input stimuli in the neurophysiological experiments
were 8 Hz dynamic random dot stereograms, and the refresh of
the stimulus pattern every 125ms drove the neurons syn-
chronously which could induce a bottom-up positive correlation
which might cancel out or overshadow the pairwise negative inter-
action between neurons.

Second, and possibly more significantly, the brain is not likely to
implement extensive local and long-range pairwise negative con-
nections between neurons. Inhibition in the cortical circuitry tends
to be mediated by local mechanisms, typically within a hypercol-
umn. Thus long range inhibition is likely mediated by a coopera-
tion between long-range excitatory connections and local
inhibitory neurons. There are numerous types of inhibitory neu-
rons in each hypercolumn, mediating a variety of physiological
phenomena such as normalization and surround suppression. The
Boltzmann machine offers an interesting proposal, among others,
on what mathematical model the cortical connections might be
implementing. It would be interesting to explore to what extent
the neurons in the visual cortex can implement all the short- and
long-range excitations and inhibitions suggested by the Boltzmann
machine. In the Boltzmann machine, as in any typical neural net-
work, units can exert both excitation and inhibition on one
another. This clearly violates the Dale’s law under which a neuron
can only be excitatory or inhibitory but not both. There are, how-
ever, many examples of recent neural circuit models with excita-
tory and inhibitory pools of neurons that could be extended to
implement neural network models with greater biological realism
(King, Zylberberg, & DeWeese, 2013). We are currently investigat-
ing an implementation of the model that obeys Dale’s law, as well
as other realistic biological constraints.

Our Boltzmann machine model was designed to learn only the
pairwise connectivity to capture pairwise correlation structures
between disparity-tuned neurons across space. It is thus limited
in the types of priors that can be encoded. It encodes 3D scene pri-
ors in the form of association fields between disparity values across
spatial locations, not association fields between 3D surface ele-
ments and shapes. Therefore, it cannot, for example, explicitly
encode priors on surface structures such as surface slopes (slants
and tilts) or surface curvatures. Another layer of hidden units (pre-
sumably corresponding to V2 neurons) receiving feedforward con-
nections from disparity-tuned units corresponding to V1 would be
required to encode surface priors in the form of the spatial activa-
tion patterns in the V1 population. The disparity association field
can perform a certain degree of filling-in and surface interpolation
as the association field network model showed in Samonds et al.
(2013). An association field for completing curved or slant-tilt

surfaces could be implemented in V2 as conjectured in Li and
Zucker (2010) and Zucker (2014).

In addition, neurophysiological experiments on our Boltzmann
machine model were simulated with Gibbs sampling, which does
not strictly follow or exhibit the dynamics of integrate-and-fire
neurons in typical neuronal circuit models. However, there have
been recent proposals showing that the temporal variability of
neuronal spiking activity could potentially be interpreted as
Monte Carlo sampling (Hoyer & Hyvdrinen, 2003; Fiser, Berkes,
Orban, & Lengyel, 2010). In addition, there have been rigorous
mathematical and computational studies on the implementation
of sampling algorithms in integrate-and-fire neuronal circuits
(Neftci, Das, Pedroni, Kreutz-Delgado, & Cauwenberghs, 2014;
Buesing, Bill, Nessler, & Maass, 2011). It is intriguing to
contemplate to what extent spike neural networks could
actually be implementing the mathematics of the Boltzmann
machine.

The comparison between the Boltzmann machine and the neu-
ral data we made could only be qualitative for several reasons.
We assumed the data set matches the natural experience of the
monkeys, and the fixation distribution is uniform. We assumed
the distribution of tuning curves for visible units can be derived
from the approach in Ganguli and Simoncelli (2010) and that
spike trains can be modeled as independent Poisson processes.
There are a number of “hyperparameters” in our model, such as
the number of units per hypercolumn, and the mean firing
rate of units. There is no guarantee that our assumptions are cor-
rect, all of which would affect the model's quantitative
predictions.

The neural data used were noisy, subject to measurement
errors, sampling errors, and are amenable mostly to qualitative
comparison. Therefore, we seek mostly to demonstrate that Boltz-
mann machines can be used to predict qualitatively the functional
circuitry of the disparity-tuned neurons in the primary visual cor-
tex, and that natural scenes can predict a general pattern of coop-
erative and competitive connectivity that we call the “disparity
association field”. While the learned disparity association field
can vary with the assumptions and hyperparameters used quanti-
tatively, the qualitative result in terms of cooperation between
similarly tuned units and competition between dissimilarly tuned
ones would still hold.

4.3. Summary

The key findings of this paper are as follows. First, certain
aspects of cortical circuits can be predicted from Boltzmann
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Fig. 8. Comparison of model and neurophysiological data in terms of CCH measures. (a)-(b) CCH measure vs. tuning similarity for model (a) and neural data (b). CCH measure
and tuning similarity were positively correlated for both cases. The tuning similarity for a pair of neurons (as well as units) is defined as the Pearson’s correlation coefficient of
their tuning curves, with two examples shown here in the lower part of (b). The right pair of neurons has a larger similarity than the left one, yielding a larger Pearson’s
correlation. The more similar pair exhibited a stronger CCH measure (0.12 vs. —0.02). (c¢)-(d) CCH measure vs. distance between neurons for model (c) and neural data (d,
upper). In (c), linear fits for pairs with positive (red) and negative (blue) CCH measures are shown separately, and the scatter plot of correlation vs. distance for raw disparity
signals is shown in the inset. In addition, a linear fit for positive CCH pairs within 1.5° is shown separately (green) to match the range of distance available in the neural data.
The CCH measure of the neural data remained constant within this range of RF distance, i.e. uncorrelated with distance, consistent with the model prediction. In (d), CCH peak
vs. distance is also shown in the lower panel. (e)-(f) Distance between neurons vs. tuning similarity for model (e) and neural data (f). For the model, pairs with positive CCH
measures were divided into three groups of the same size, and shown in three different colors. Negative CCH pairs were ignored because they were small in magnitude and
uniform across different tuning similarities and distances. (b,f) and the lower panel of (d) are adapted from Samonds et al. (2009) with permission of authors.

machines trained on natural scene data. Second, the cortical cir-
cuit among disparity-tuned neurons, by virtue of encoding struc-
tures in 3D natural scenes, appears to form a disparity association
field that could be useful for stereo processing such as removing
ambiguity in solving the correspondence problem or performing
surface filling-in or interpolation, as some of our recent experi-
ments indicated (Samonds et al., 2016). Third, the structures of
the intra-columnar and inter-columnar inhibitory interactions
learned by our model suggest that Boltzmann machines might
provide an alternative perspective on some prevalent neurophys-
iological phenomena such as normalization and surround sup-
pression (Carandini & Heeger, 2012); additional studies will be
required to confirm this conjecture. Finally, this work suggests

that Boltzmann machines are a viable model for understanding
how the Bayesian prior of natural scenes is encoded in the visual
cortex. By demonstrating the potential relevance of Boltzmann
machines for understanding neural circuitry, this work suggests
that a broader class of computational models, called Markov ran-
dom fields, which are popular and widely used in computer
vision and have enjoyed considerable success in solving real early
vision problems, might be a viable model of the visual cortex.
This work points to the exciting possibility that insights from
computer vision on this class of models can be leveraged to
understand what problems the visual cortex could be solving
and the computational architecture and algorithms underlying
the solutions of these problems.
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