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Abstract In this study, we evaluated the convolutional
neural network (CNN) method for modeling V1 neu-
rons of awake macaque monkeys in response to a large
set of complex pattern stimuli. CNN models outper-
formed all the other baseline models, such as Gabor-
based standard models for V1 cells and various vari-
ants of generalized linear models. We then systemati-
cally dissected di↵erent components of the CNN and
found two key factors that made CNNs outperform
other models: thresholding nonlinearity and convolu-
tion. In addition, we fitted our data using a pre-trained
deep CNN via transfer learning. The deep CNN’s higher
layers, which encode more complex patterns, outper-
formed lower ones, and this result was consistent with
our earlier work on the complexity of V1 neural code.
Our study systematically evaluates the relative merits
of di↵erent CNN components in the context of V1 neu-
ron modeling.

Keywords convolutional neural network · V1 ·
nonlinear regression · system identification

1 Introduction

There has been great interest in the primary visual cor-
tex (V1) since pioneering studies decades ago (Hubel
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and Wiesel, 1968, 1959, 1962). V1 neurons are tradi-
tionally classified as simple and complex cells, which
are modeled by linear-nonlinear (LN) models (Heeger,
1992) and energy models (Adelson and Bergen, 1985),
respectively. However, a considerable gap between the
standard theory of V1 neurons and reality has been
demonstrated repeatedly, at least from two aspects. First,
although standard models explain neural responses to
simple stimuli such as gratings well, they cannot explain
satisfactorily neural responses to more complex stimuli,
such as natural images and complex shapes (David and
Gallant, 2005; Victor et al., 2006; Hegdé and Van Es-
sen, 2007; Köster and Olshausen, 2013). Second, more
sophisticated analysis techniques have revealed richer
structures in V1 neurons than those dictated by stan-
dard models (Rust et al., 2005; Carandini et al., 2005).
As an additional yet novel demonstration of this gap,
using large-scale calcium imaging techniques, we (Li
et al., 2017; Tang et al., 2018) have recently discovered
that a large percentage of neurons in the superficial lay-
ers of V1 of awake macaque monkeys respond strongly
to highly specific complex features; this finding suggests
that some V1 neurons act as complex pattern detectors
rather than Gabor-based edge detectors as dictated by
classical studies (Jones and Palmer, 1987a; Dayan and
Abbott, 2001).

While our previous work (Tang et al., 2018) has
shown the existence of complex pattern detector neu-
rons in V1, a quantitative understanding of the rela-
tionship between input stimuli and neural responses for
those neurons has been lacking. One way to better un-
derstand these neurons quantitatively is to build com-
putational models that predict their responses given in-
put stimuli (Wu et al., 2006). If we can find a model that
accurately predicts neural responses to (testing) stim-
uli not used during training, a careful analysis of that
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2 Yimeng Zhang⇤ et al.

model should give us insights into the computational
mechanisms of the modeled neuron(s). For example, we
can directly examine di↵erent components of the model
(McIntosh et al., 2017; McFarland et al., 2013; Prenger
et al., 2004), find stimuli that maximize the model out-
put (Kindel et al., 2017; Olah et al., 2017), and decom-
pose model parameters into simpler, interpretable parts
(Rowekamp and Sharpee, 2017; Park et al., 2013).

A large number of methods have been applied to
model V1 neural responses, such as ordinary least squares
(Theunissen et al., 2001; David and Gallant, 2005),
spike-triggered average (Theunissen et al., 2001), spike-
triggered covariance (Touryan et al., 2005; Rust et al.,
2005), generalized linear models (GLMs) (Kelly et al.,
2010; Pillow et al., 2008), nested GLMs (McFarland
et al., 2013), subunit models (Vintch et al., 2015), and
artificial neural networks (Prenger et al., 2004). Com-
pared to more classical methods, convolutional neural
networks (CNNs) have recently been found to be more
e↵ective for modeling retinal neurons (Kindel et al.,
2017) and V1 neurons in two studies concurrent to ours
(McIntosh et al., 2017; Cadena et al., 2017). In addi-
tion, CNNs have been used for explaining inferotempo-
ral cortex and some other areas (Yamins et al., 2013;
Kriegeskorte, 2015; Yamins and DiCarlo, 2016). Never-
theless, existing studies mostly treat the CNN as a black
box without analyzing much the reasons underlying its
success relative to other models, and we are trying to
fill that knowledge gap explicitly in this study.

To understand the CNN’s success better, we first
evaluated the performance of CNN models, Gabor-based
standard models for simple and complex cells, and vari-
ous variants of GLMs on modeling V1 neurons of awake
macaque monkeys in response to a large set of complex
pattern stimuli (Tang et al., 2018). We found that CNN
models outperformed all the other models, especially
for neurons that acted more like complex pattern de-
tectors than Gabor-based edge detectors. We then sys-
tematically explored di↵erent variants of CNN models
in terms of their nonlinear structural components, and
found that thresholding nonlinearity and max pooling,
especially the former, were important for the CNN’s
performance. We also found that convolution (spatially
shifted filters with shared weights) in the CNN was ef-
fective for increasing model performance. Finally, we
used a pre-trained deep CNN (Simonyan and Zisser-
man, 2014) to model our neurons via transfer learn-
ing (Cadena et al., 2017), and found that the deep
CNN’s higher layers, which encode more complex pat-
terns, outperformed lower ones; the result was consis-
tent with our earlier work (Tang et al., 2018) on the
complexity of V1 neural code. While some of our ob-
servations have been stated in alternative forms in the

literature, we believe that this is the first study that
systematically evaluates the relative merits of di↵erent
CNN components in the context of V1 neuron model-
ing.

2 Stimuli and neural recordings

2.1 Stimuli

Using two-photon calcium imaging techniques, we col-
lected neural population data in response to a large set
of complex artificial “pattern” stimuli. The “pattern”
stimulus set contains 9500 binary (black and white) im-
ages of about 90 px by 90 px from five major categories:
orientation stimuli (OT; bars and gratings), curvature
stimuli (CV; curves, solid disks, and concentric rings),
corner stimuli (CN; line or solid corners), cross stim-
uli (CX; lines crossing one another), and composition
stimuli (CO; patterns created by combining multiple el-
ements from the first four categories). The last four cat-
egories are also collectively called non-orientation stim-
uli (nonOT). See Figure 1 for some example stimuli. In
this study, the central 40 px by 40 px parts of the stim-
uli were used as model input as 40 pixels translated to
1.33 degrees in visual angle for our experiments and all
recorded neurons had classical receptive fields of diam-
eters well below one degree in visual angle around the
stimulus center (Tang et al., 2018). The cropped stimuli
were further downsampled to 20 px by 20 px for compu-
tational e�ciency. Later, we use x

t

to represent the t-th
stimulus as a 20 by 20 matrix, with 0 for background
and 1 for foreground (there can be intermediate values
due to downsampling), and ~

x

t

to denote the vectorized
version of x

t

as a 400-dimensional vector.

Stimulus type Previous work modeling V1 neurons mostly
used natural images or natural movies (Kindel et al.,
2017; Cadena et al., 2017; David and Gallant, 2005),
while we used artificial pattern images (Tang et al.,
2018). While neural responses to natural stimuli ar-
guably reflect neurons’ true nature better, it has the
following problems in our current study: 1) public data
sets (Coen-Cagli et al., 2015) of V1 neurons typically
have much fewer images and neurons than our data set,
and limited data may introduce bias on the results; 2)
artificially generated images can be easily classified and
parameterized, and this convenience allows us to clas-
sify neurons and compare models over di↵erent neu-
ron classes separately (Section 2.2). While white noise
stimuli (Rust et al., 2005; McIntosh et al., 2017) are
another option, we empirically found that white noise
stimuli (when limited) would not be feasible for finding
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Convolutional neural network models of V1 responses to complex patterns 3

the correct model parameters (assuming CNN models
are correct); see Supplementary Materials.

2.2 Neural recordings

The neural data were collected from V1 superficial lay-
ers 2 and 3 of two macaque monkeys A and B. For
monkey A, responses of 1142 neurons in response to all
9500 (1600 OT and 7900 nonOT) stimuli were collected.
For monkey B, responses of 979 neurons in response to
a subset of 4605 (800 OT and 3805 nonOT) stimuli
were collected due to time constraints. Each stimulus
was presented for 5 repetitions for both monkeys. Dur-
ing each repetition, all recorded neurons’ responses in
terms of �F/F were collected. Later, we use r

n

t,i

to de-
note the neural response of the n-th neuron for the t-th
stimulus in the i-th trial (i = 1, . . . , 5), r

n

t

to denote the
average neural response over trials, and ~

r

n to denote all
the average neural responses for this neuron as a vector.
Specifically, we have n = 1, . . . , 1142, t = 1, . . . , 9500
for monkey A and n = 1, . . . , 979, t = 1, . . . , 4605 for
monkey B.

Cell classification The recorded neurons in the neural
data had mixed tuning properties (Tang et al., 2018):
some acted more like complex pattern detectors, some
acted more like simple oriented edge detectors, and
some had weak responses to all the presented stimuli.
To allow cleaner and more interpretable model com-
parisons, we evaluated model performance for di↵erent
types of neurons separately (Section 5). For example,
when comparing a CNN model and a GLM, we com-
puted their performance metrics over neurons that were
like complex pattern detectors and those more like sim-
ple edge detectors separately, as it is possible that neu-
rons of di↵erent types are modeled best by di↵erent
model classes. To make such per-neuron-type compari-
son possible, a classification of neurons is required. Here
we use the neuron classification scheme in Tang et al.
(2018). First, neurons whose maximum mean responses
were not above 0.5 (max r

n

t

 0.5) were discarded as
their responses were too weak and might be unreli-
able; then, among all the remaining neurons that passed
the reliability test, neurons whose maximum mean re-
sponses over nonOT stimuli were more than twice of

those over OT stimuli (
max r

n
t
1

max r

n
t
2

> 2, where t

1

and t

2

go over all nonOT and OT stimuli respectively) were
classified as HO (higher-order) neurons and the others
were classified (conservatively) as OT neurons; finally,
all the HO and OT neurons were further classified into
subtypes, such as curvature neurons and corner neu-
rons, based on ratio tests similar to the one above—for

Fig. 1 Top “Pattern” stimulus set. Stimuli are arranged in
rows, each row showing 10 randomly drawn stimuli for each
of the five categories (see the bottom right corner of each
row). Only the central 40 px by 40 px parts of stimuli are
shown. Refer to Tang et al. (2018) for details. Bottom A sub-
set of curvature and line stimuli in the stimulus set, ordered
by stimulus parameters (curvature, length, and orientation).
Only the central 40 px by 40 px parts are shown.

example, an HO neuron was additionally considered as
a curvature neuron if its maximum response over cur-
vature stimuli was more than twice of that over non-
curvature stimuli. Overall, ignoring the unreliable ones,
at the top level, there were OT neurons and HO neu-
rons; OT neurons were further classified as classical and
end-stopping (neurons that responded well to short bars
but poorly to long ones) neurons; HO neurons were fur-
ther classified as curvature, corner, cross, composition,
and mixed (neurons that failed ratio tests for all the
four types of nonOT stimuli) neurons. Figure 7 shows
example neurons of di↵erent classes.

Recording technique While most other studies use spik-
ing data collected using multi-electrode array (MEA)
technologies, we use calcium imaging data (Li et al.,
2017; Tang et al., 2018). Although MEA-based spiking
data are in theory more accurate, calcium imaging tech-
niques can record many more neurons and do not su↵er
from spike sorting errors. In addition, Li et al. (2017)
have shown that the calcium imaging technique we used
exhibits linear behavior with MEA technologies across
a wide range of spiking activities.
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4 Yimeng Zhang⇤ et al.

3 Methods

Here, we describe three classes of models for model-
ing V1 neurons in our data set. All the models ex-
plored in this study can be considered variants of one-
hidden-layer neural networks with di↵erent constraints
and components. By considering them in the frame-
work of one-hidden-layer neural networks (Section 3.4),
we can easily identify key components that make CNNs
perform better. In addition, all the methods here model
each neuron separately (no parameter sharing among
models fitted to di↵erent neurons) and the numbers of
parameters of di↵erent models are kept to be roughly
the same if possible; the parameter separation and equal-
ity in model size ensure a fairer comparison among mod-
els. For each neuron n from some monkey, all our mod-
els take image x

t

of size 20 by 20 as input and try to
predict the neuron’s mean response r

n

t

of image t as
output. See Section 2 for an explanation of the nota-
tion.

3.1 CNN models

A CNN model passes the input image through a se-
ries of linear-nonlinear (LN) operations—each of which
consists of convolution, ReLU nonlinearity (Krizhevsky
et al., 2012), and (optionally) max pooling. Finally, out-
puts of the final LN operation are linearly combined as
the predicted response of the neuron being modeled.
Our baseline CNN model for V1 neurons is shown in
Figure 2, with one (convolutional) layer and 9 filters.
Given a 20 by 20 input, it first convolves and recti-
fies (“convolve + threshold” in the figure) the input
with 9 filters of size 9, yielding 9 feature maps (chan-
nels) of size 12 by 12, one for each filter. Then max
pooling operation (“max pool” in the figure) is per-
formed for each feature map separately to produce 9
pooled feature maps of size 4 by 4. Finally, all the indi-
vidual output units across all the pooled feature maps
are linearly combined (“linear combination” in the fig-
ure), plus some bias, to generate the predicted neural
response.

As shown in Table 2 of Section 4.1, apart from the
baseline model with 9 channels (B.9 in the table), we
also explored other CNN models with the same overall
architecture but di↵erent numbers of channels.

3.2 “Standard” Gabor-based models

Gabor filters are widely used in theoretical models of V1
neurons (Dayan and Abbott, 2001; Jones and Palmer,

1987a; Daugman, 1985). Therefore, we tried to fit (rel-
atively speaking) standard Gabor-based V1 models to
our data as control. We tried Gabor simple cell models,
Gabor complex cell models, as well as their linear com-
binations (Figure 3). Interestingly, to the best of our
knowledge, such models were not examined in the ex-
isting V1 data fitting literature in terms of their perfor-
mance compared to more popular ones such as GLMs.

3.2.1 Gabor simple cell models

A Gabor simple cell model (Heeger, 1992; Rust et al.,
2005; Carandini et al., 2005) takes the following form:

r̂ = a[h~x,

~

g(x, y, !, ✓, �

x

, �

y

, �)i + c]2
+

+ b, (1)

where ~

x is the input stimulus in raw pixel space re-
shaped as a vector (Section 2.1), ~

g(x, y,!, ✓, �

x

, �

y

, �)
is the Gabor filter (reshaped as a vector) in the raw
pixel space with locations x, y, frequency !, orientation
✓, phase �, and standard deviations of the Gaussian en-
velope �

x

, �

y

, and a, b, c are scale and bias parameters.
In such formulation, given some input, the model com-
putes the dot product between the input and its Gabor
filter (plus some bias), and passes the output through
a half-wave squaring nonlinearity [·]2

+

. In the existing
literature, some simple cell models use threshold non-
linearity (also called over-rectification) [· + c]

+

while
some others use half-wave squaring nonlinearity [·]2

+

;
according to Heeger (1992), these two nonlinearities are
approximately the same in some sense and therefore we
include them both in our models for more flexibility.

3.2.2 Gabor complex cell models

A Gabor complex cell model (Heeger, 1992; Adelson
and Bergen, 1985; Rust et al., 2005; Carandini et al.,
2005) takes the following form:

r̂ = a[h~x,

~

g(x, y,!, ✓, �

x

, �

y

, 0)i2

+ h~x,

~

g(x, y,!, ✓,�

x

, �

y

, ⇡/2)i2] + b,

(2)

where ~

x is defined as before, ~

g(x, y,!, ✓, �

x

, �

y

, 0) and
~

g(x, y,!, ✓, �

x

, �

y

, ⇡/2) are a pair of Gabor filters (re-
shaped as vectors) in the raw pixel space with the same
parameters (check Section 3.2.1 for details) except for
phases di↵ering by ⇡/2, and a, b are scale and bias pa-
rameters. In such formulation, given some input, the
model computes the outputs of two linear Gabor fil-
ters with quadrature phase relationship and sums their
squares together to achieve phase invariance. As an
aside, while we set phases of the Gabor filter pair to
be � and � + ⇡/2 with � = 0, any other � will also
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Step 1 
convolve + 
threshold
⊗⊗
⊗⊗

Step 2
max pool

1

0
1

10

0
2
1

0
predicted 
response

height=width=12
channel=9

height=width=4
channel=9

kernel size=9 kernel size=6
stride=2

Step 3
linear

combination
input image

20 x 20 (40 x 40 @ 0.5x)

Fig. 2 The architecture of our baseline CNN model (or B.9 in Table 2). Given a 20 by 20 input image (40 by 40 downsampled
to half; see Section 2), the model computes the predicted neural response in three steps. In Step 1 (“convolve + threshold”),
the model convolves and rectifies the input to generate an intermediate output of size 12 by 12 by 9 (height, width, channel;
3D block in the middle); concretely, for each of the model’s 9 filters of size 9 by 9 (kernel size), the model computes the dot
product (with some bias) between the filter and every 9 by 9 subregion in the input (red square being one example), rectifies
(x 7! max(0, x)) all the dot products, and arranges the rectified results as a 12 by 12 feature map; the process is repeated
for each of the 9 filters (channels) and all the 9 feature maps are stacked to generate the 12 by 12 by 9 intermediate output.
In Step 2 (“max pool”), max pooling operation is performed for each feature map separately to produce 9 pooled feature
maps of size 4 by 4; concretely, for each of the 12 feature maps obtained in Step 1, maximum values over 6 by 6 subregions
are computed every 2 data points (stride) and arranged as a 4 by 4 pooled feature map; the process is repeated for each of
the 9 feature maps to generate the 4 by 4 by 9 pooled output. In Step 3 (“linear combination”), all the individual output
units across all the pooled feature maps are linearly combined plus some bias to generate the predicted neural response. See
Section 3.1 as well.

Simple cell model Complex cell model

Linear combination of
Simple and Complex cell models

S1 S2 C1 C2… …

Fig. 3 The architecture of Gabor-based models. A simple
cell model (left) takes the dot product of a Gabor filter and
the input, and passes through the output through a half-
wave squaring nonlinearity. A complex cell model (middle)
takes the dot products of two Gabor filters with quadrature
phase relationship, squares and sums the outputs. A linear
combination of simple and complex cell models (right) takes
some linear combination of some simple cell models (S) and
some complex cell models (C). This figure is partially inspired
by Figure 1 in Rust et al. (2005) and Figure 1 in Carandini
et al. (2005).

work; empirically we found Eq. (2) has no or little de-
pendence on �.

3.2.3 Linear combinations of complex and simple cell
models

While simple and complex cell models are the canoni-
cal ones in most neuroscience textbooks, detailed anal-
yses on monkey V1 neurons have revealed more than
one (simple) or two (complex) linear components (Rust

et al., 2005; Carandini et al., 2005). Rust et al. (2005)
call such extensions to “standard” simple and complex
cell models “generalized LNP response models” (Fig-
ure 1C of Rust et al. (2005)). One simple realization of
generalized LNP response models is to take linear com-
binations of “standard” Gabor-based models that are
defined above.

3.3 Generalized linear models

predicted 
responselinear response and 

exponentationtransformed input

raw input
(matrix 

and vector 
versions)

Vanilla

Quadratic

Fourier powerx =

�

��
x

1,1

· · · x

1,20

...
. . .

...
x

20,1

· · · x

20,20

�

��

~

x = (x
1,1

, . . . , x

1,20

, x

2,1

, . . . , x

20,20

)

�(x) exp(h�(x), ~

wi + b)

�

Q

(x, �) = ~

x � {x

i,j

x

i+m,j+n

},

0  |m|, |n|  �

�

I

(x) = ~

x �

FP

(x) =
�!
FP(x)

Fig. 4 The architecture of generalized linear models. The
raw input stimulus x is first transformed into �(x), where
di↵erent �(·) are used for di↵erent GLM variants (inside
the box). For vanilla GLMs, we use the identity transfor-
mation �I(·); for Fourier power models, we use the Fourier
power transformation �

FP

(·) (Section 3.3.2); for generalized
quadratic models, we use the localized quadratic transforma-
tion �Q(·, ⌧) (Section 4.3.2 and Section 3.3.3). The trans-
formed input �(x) is passed into a linear function h·,wi + b

and the output is exponentiated to give the predicted neural
response. For details on the localized quadratic transforma-
tion (�Q(·, ⌧) in the figure), see Section 4.3.2 and Figure 5.
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6 Yimeng Zhang⇤ et al.

We consider the following set of Poisson general-
ized linear models (McCullagh and Nelder, 1989; Panin-
ski, 2004) with possibly nonlinear input transforma-
tions (Figure 4). We also tried Gaussian GLMs and
they performed consistently worse than Poisson ones in
our experiments. Note that the term “GLM” has been
used pretty loosely in the literature, and many models
with similar structural components to those in the CNN
are considered GLMs by many. We want to emphasize
that the purpose of including GLMs in this study is not
to compare CNNs and (all the variations of) GLMs in
terms of performance but to find key components that
make CNN models outperform commonly used models
for V1 modeling. We call these models GLMs mainly
because they are often formulated as GLMs in the liter-
ature. See Section 3.4 for the connection between CNNs
and GLMs considered in this study.

3.3.1 Vanilla generalized linear models

A vanilla (linear) GLM takes the following form:

r̂ = exp(h~x,

~

wi + b), (3)

where ~

x is the input stimulus in raw pixel space re-
shaped as a vector, ~

w is the linear spatial filter in the
raw pixel space, and b is the bias parameter for adjust-
ing the firing threshold. The formulation of this vanilla
GLM is standard for modeling V1 simple cells (Jones
and Palmer, 1987b; David and Gallant, 2005; Carandini
et al., 2005), which respond to stimuli having appro-
priate orientation, spatial frequency, and spatial phase
(Hubel and Wiesel, 1959).

3.3.2 Fourier power models

A Fourier power model (David and Gallant, 2005) takes
the following form:

r̂ = exp(h�!FP(x), ~

wi + b), (4a)

FP(x)(!
x

, !

y

) = |X(!
x

, !

y

)|2, (4b)

where FP(x) computes the Fourier power spectrum of
the input stimulus (FP(x) is 2D in Eq. (4b) and re-

shaped to a vector
�!
FP(x) in Eq. (4a)), X denotes the

2D Fourier transform of the input stimulus, ~

w is the lin-
ear filter in the Fourier power domain, and b is the bias
parameter for adjusting the firing threshold. In prac-
tice, Fourier power models provide performance close
to the state of the art (Carandini et al., 2005; Köster
and Olshausen, 2013).

3.3.3 Generalized quadratic models

A generalized quadratic model (GQM) (Park and Pil-
low, 2011; Park et al., 2013) takes the following form:

r̂ = exp(Q(~x)), (5a)

Q(~x) = ~

x

T

W

~

x + ~

a

T

~

x + b, (5b)

where Q(~x) computes a quadratic feature transforma-
tion of the (vectorized) input stimulus, W ,

~

a, b are the
second-order parameters, first order parameters, and
bias parameter respectively in the transformation. A
GQM can be formulated as a GLM with quadratic fea-
ture transformation (Park et al., 2013), which intro-
duces additional nonlinearity components and flexibil-
ity for neuron modeling. In addition, there is a connec-
tion between GQMs and spike-triggered based methods
under certain conditions (Park and Pillow, 2011) and
GQMs are statistically more e�cient. Note that Fourier
power models (Section 3.3.2) can be also formulated as
GQMs, as |X(!

x

, !

y

)|2 = (~xT

U(!
x

, !

y

))(~xT

U(!
x

, !

y

))
in Eq. (4b) , where U(!

x

, !

y

) denotes the Fourier trans-
form vector for frequency pair (!

x

, !

y

) and U(!
x

, !

y

)
denotes its complex conjugate.

3.4 Connections among CNNs, Gabor models, and
GLMs

As mentioned in the beginning of Section 3, the three
classes of models considered in this study are connected
and form a continuum as they all can be roughly formu-
lated as vanilla one-hidden-layer neural networks (Bishop,
2006), or one-hidden-layer multilayer perceptrons (MLPs):

r̂(~x) =
CX

i=1

c

i

z

i

(~x) + b, (6a)

z

i

(~x) = f(a
i

(~x)), (6b)

a

i

(~x) = h~x,

~

w

(i)i + b

i

. (6c)

A one-hidden-layer neural network computes the out-
put r̂ given (vectorized) input stimulus ~

x according to
Eqs. (6). Overall, the output is a linear combination of
C hidden units’ output values z

i

as shown in Eq. (6a).
Each hidden unit’s output is computed by applying
some nonlinearity (also called activation function) f on
the pre-activation value of the hidden unit a

i

as shown
in Eq. (6b), and pre-activation value a

i

is a linear func-
tion of input specified by weights ~

w

(i) and bias b

i

as
shown in Eq. (6c).

Gabor models can be formulated as MLPs with con-
straints that weights ~

w

(i) must be Gabor functions. A
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Convolutional neural network models of V1 responses to complex patterns 7

simple cell model is a MLP with one hidden unit and
half-wave squaring nonlinearity; a complex cell model
is a MLP with two hidden units in quadrature phase
relationship and squaring nonlinearity; a linear combi-
nation of simple and complex cell models is a MLP with
multiple hidden units and mixed nonlinearities.

GLMs can be formulated as MLPs with an addi-
tional exponential nonlinearity on output. A vanilla
GLM is a MLP with one hidden unit and no nonlin-
earity (linear); a Fourier power GLM is a MLP with
multiple hidden units of fixed weights (Fourier basis
functions) and squaring nonlinearity; A GQM is a MLP
with multiple hidden units and squaring nonlinearity—
the linear term in Eq. (5b) can be absorbed into the
quadratic one as long as the quadraic coe�cient matrix
is full rank. Empirically, we found the additional ac-
celerating exponential nonlinearity to be unimportant
for the modeling of our data, as Poisson GLMs with
the additional accelerating nonlinearity performed sim-
ilarly or marginally better, compared to Gaussian and
softplus GLMs without such nonlinearity (Supplemen-
tary Materials).

A CNN can be formulated as a MLP with ReLU
(x 7! max(0, x)) nonlinearity and an additional max
pooling operation before the final output computation
of Eq. (6b). Compared to other models, a CNN has ad-
ditional constraints among the weights of hidden units—
shared and spatially shifted in groups. For example,
our baseline CNN can be considered as a MLP with
12 ⇥ 12 ⇥ 9 = 1296 hidden units, as each 9 by 9 filter
in the CNN yields a feature map of 12 ⇥ 12 = 144 hid-
den units, and there are 9 filters in the CNN. For MLP
hidden units derived from a common feature map, fil-
ter weights are shared and spatially shifted; for MLP
hidden units derived from di↵erent feature maps, fil-
ter weights are independent. This group-wise sharing
of hidden unit weights in CNN models is not present in
GLMs, which we will compare in detail with CNNs in
Section 5 as GLMs were the best-performing non-CNN
models in our experiments.

Table 1 gives a summary of di↵erent models in terms
of their structures, under the framework of one-hidden-
layer neural network (or MLP). We classify nonlinear-
ities into thresholding (half-wave squaring and ReLU)
and non-thresholding (squaring) ones, because we found
all the thresholding activation functions behaved essen-
tially the same in our experiments (Section 5.2) and we
think that being thresholding or not may be the most
important aspect for a nonlinearity.

3.5 Pre-trained CNNs

There are at least two di↵erent ways to model V1 neu-
rons and neural data in general using CNNs: data-driven
and transfer learning. In the data-driven approach, CNNs
are trained from scratch to fit the neural data. This is
the approach taken in this study and many other very
recent ones (Kindel et al., 2017; McIntosh et al., 2017).
In the transfer learning (also called goal-driven) ap-
proach (Yamins and DiCarlo, 2016; Kriegeskorte, 2015),
CNN models are first trained on some other tasks such
as image classification, and then neural data are fitted
by (linearly) combining outputs of fitted units in the
trained models. As shown in Cadena et al. (2017), two
approaches work similarly for V1 neurons in response
to natural images.

As an additional experiment, we tried to model neu-
rons in our data set using a transfer-learning approach
similar to that in Cadena et al. (2017). Specifically, we
fed all images1 to the CNN model VGG19 (Simonyan
and Zisserman, 2014) and extracted intermediate fea-
ture representations of the images across all the CNN
layers (except fully-connected ones). The intermediate
representations of each layer were used as inputs to
train (a set of) GLMs to model all the neurons. All the
other implementation details were the same as those for
GLMs (Section 4.3).

3.6 Model evaluation

Given some model f

~✓ with trainable parameters ~

✓, we
evaluate its performance s(f

~✓, D) on a single neuron n

based on its input stimuli and responses D = {(~x
t

, r

n

t

)},
where {r

n

t

} are the across-trial average responses com-
puted from {r

n

t,i

} (Section 2.2), by squared normalized

correlation coe�cient CC2

norm

(Schoppe et al., 2016;
Hsu et al., 2004).

To evaluate a model, we first partition D into train-
ing set D

train

and testing set D

test

using 80% and 20%
of the whole data set, respectively. For those models in-
volving model selection in the training (all but Gabor
models), 20% of the training data is reserved for valida-
tion purpose. We use D

train

to obtain the trained model
f

~✓⇤ , and compute the model performance s(f
~✓, D) as

follows (neuron index n is omitted as there is only one
neuron being considered):

1 the images were rescaled to 2/3 of their original sizes; we
used this scale because in another study (Zhang et al., 2016)
we found that this scale gave the highest representational
similarity (Kriegeskorte et al., 2008) between the CNN and
neural data among all scales explored; we also tried using raw
images without rescaling in the current study and got worse
results.
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8 Yimeng Zhang⇤ et al.

Table 1 Comparison of model structures for Gabor models, GLMs, and CNNs in the framework of one-hidden-layer MLP.
First two columns specify the model class and subclass. The third column shows whether the models’ corresponding MLPs
have multiple hidden units or not. The fourth column shows the constraints among hidden units imposed by the models;
“independent” means weights for di↵erent hidden units can vary independently, “shared” means weights for di↵erent hidden
units are tied together (via convolution), “quadrature phase” means weights of the hidden unit pair are in quadrature phase
relationship (specific to Gabor models), and “fixed” means weights are not learned but specified before training. The fifth
column specifies the nonlinearity (activation function), with “none” meaning no nonlinearity (identity or linear activation
function), and “mixed” meaning both thresholding and non-thresholding nonlinearities. The last column specifies additional
structures imposed by the models.

Class Subclass Multiple units constraints among units nonlinearity additional structures

Gabor
simple No — thresholding weights are Gabor
complex Yes quadrature phase non-thresholding weights are Gabor
combination Yes independent mixed weights are Gabor

GLM
vanilla No — none exponential output
Fourier power Yes fixed (not learned) non-thresholding exponential output
GQM Yes independent non-thresholding exponential output

CNN — Yes independent + shared thresholding max pooling

s(f
~✓, D) = CC2

norm

(f
~✓⇤ , D), (7)

CC
norm

(f
~✓⇤ , D) =

CC
abs

(~r
test

,

~̂

r

test

)

CC
max

({r

t,i

})
, (8)

~̂

r

test

= (. . . , f
~✓⇤(~xj

), . . .), (9)

~

r

test

= (. . . , r
j

, . . .) (~x
j

, r

j

) 2 D

test

, (10)

CC
abs

(~x,

~

y) =

P
i

(x
i

� x)(y
i

� y)pP
i

(x
i

� x)2
pP

i

(y
i

� y)2
,

(11)

CC
max

({r

t,i

}) =

s
Var({

P
j

r

t,j

}) �
P

j

Var({r

t,j

})

5(5 � 1)Var({r

t

})
.

(12)

Concretely, we first compute the raw Pearson corre-
lation CC

abs

between the set of neural responses ~

r

(k)

and the set of model responses ~̂

r

test

using Eq. (11) (x
and y denote mean values of the two inputs), then di-
vide this CC

abs

by CC
max

, which is defined in Eq. (12)
(adapted from Schoppe et al. (2016), with 5 in the de-
nominator being the number of trials) and estimates the
maximal Pearson correlation coe�cient an ideal model
can achieve given the noise in the neural data (Schoppe
et al., 2016; Hsu et al., 2004) , to get the normalized
Pearson correlation coe�cient using Eq. (8), and finally
square CC

norm

to get the model performance s(f
~✓, D)

using Eq. (7). As squared CC
abs

gives the fraction of
variance in neural responses explained by the model in
a simple linear regression, squared CC

norm

gives the
normalized explained variance that accounts for noise
in the neural data. Notice that CC

max

is computed over
all the data instead of testing data for more accurate
estimation.

Our definition of model performance depends on
how D is partitioned. To make our results less suscep-
tible to the randomness of data partitioning, we report
results averaged over two partitions.

4 Implementation Details

4.1 CNN models

4.1.1 Detailed model architecture

Table 2 shows all the three CNN model architectures
we evaluated against other models (Section 5), with
the baseline CNN model (Figure 2) denoted B.9 in
the table. For a fair comparison between CNNs and
other models (primarily GLMs; Gabor models inher-
ently have too few parameters), in addition to the base-
line CNN model B.9, we also evaluated two variants of
the baseline model by changing its number of chan-
nels. Overall, the three CNN models match the three
classes of GLMs (Section 4.3) in terms of model size.
For vanilla GLMs (401 parameters), we picked the 4-
channel CNN architecture (393 parameters); for Fourier
power GLMs (around 200 parameters due to the sym-
metry of Fourier power for real-valued input), we picked
the 2-channel one (197 parameters). For GQMs, whose
original numbers of parameters are too large, we de-
cided to perform PCA on their input data to reduce
the dimensionality. We set the reduced dimensionality
to 882 (therefore 883 parameters for GQMs), and eval-
uated GQMs against the baseline 9-channel CNN archi-
tecture (883 parameters). While we could keep more or
fewer input dimensions for GQMs and use CNN mod-
els with more or fewer channels accordingly, we found
that (1) the CNN’s performance relatively plateaued for
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Convolutional neural network models of V1 responses to complex patterns 9

having more than 9 channels (see Supplementary Ma-
terials) and (2) keeping fewer input dimensions could
potentially a↵ect the performance of GQMs (see Sec-
tion 4.3.2). The 2- and 4-channel CNNs were used mainly
for a fair comparison of CNNs and other models, and
the baseline 9-channel one was further analyzed.

Table 2 CNN model architectures explored in this work.
Each row describes one CNN model architecture, with the
first column showing its name (B.n where n is the number
of channels), middle columns describing its computational
components, and the last showing its number of parameters.
Each CNN model first passes the input image through three
computational components shown in the table—convolution
(conv), nonlinearity, and pooling—and then linearly combine
(“fully connected” in CNN jargon) output values of the pool-
ing operation to give the model output. The baseline CNN
(B.9) has its number of parameters shown in boldface. The
number of parameters is computed by adding the number of
parameters in the convolutional layer and that in the fully
connected layer. For example, the baseline model B.9 has
9⇥ (9⇥ 9 + 1) = 738 parameters (9 for number of channels,
9 for kernel size, and 1 for bias) for the convolutional layer,
and 9⇥4⇥4+1 = 145 parameters (9 for number of channels,
4 for pooled feature map’s size, and 1 for bias) for the fully
connected layer, resulting in 738 + 145 = 883 parameters.

Name conv nonlinearity pooling # of params

B.2
(kernel 9,
channel n)

ReLU
(max pool,
kernel 6,
stride 2)

197
B.4 393
B.9 883

4.1.2 Optimization

The models were implemented in PyTorch (Paszke et al.,
2017), version 0.3.1. Model parameters were optimized
to minimize the mean squared error between model out-
puts and recorded neural responses. Of all the train-
ing data, 80 % of them were used for actual training,
and the remaining 20 % were kept as validation data
for early stopping (Goodfellow et al., 2016) and model
selection. For each combination of neuron and model
architecture, we trained the model four times using
four sets of optimization hyperparameters (Table 3),
which were selected from more than 10 configurations in
our pilot experiments (Supplementary Materials) con-
ducted on about 10 neurons2. Of all the four models
trained using di↵erent optimization hyperparameters,
the one with the highest performance on validation data
in terms of Pearson correlation coe�cient was selected.

2 in theory we should exclude these neurons for model eval-
uation, we did not do it as doing it or not has negligible e↵ects
with hundreds of neurons in our data set.

Table 3 Optimization hyperparameters for CNN models.
Minibatch size was set to 128 in all cases, momentum (for
SGD) was set to 0.9, and other hyperparameters, such as �

in Adam (Kingma and Ba, 2014), took default values in Py-
Torch. LR, learning rate; L2 conv, L2 weight decay on the
convolutional layer; L2 fc, L2 weight decay on the fully con-
nected layer; SGD, vanilla stochastic gradient descent with
momentum.

Name Optimizer LR L2 conv L2 fc

1e-3 1e-3 a002 Adam 0.002 0.001 0.001
1e-4 1e-3 a002 Adam 0.002 0.0001 0.001
1e-3 1e-3 s1 SGD 0.1 0.001 0.001
1e-4 1e-3 s1 SGD 0.1 0.0001 0.001

4.2 “Standard” Gabor-based models

The models were implemented in PyTorch (Paszke et al.,
2017). Input stimuli were preprocessed to have zero
mean for each stimulus. Model parameters were op-
timized to minimize the mean squared error between
model outputs and recorded neural responses using Adam
(Kingma and Ba, 2014) without weight decay and with
full batch learning (so gradients were computed using
the full data set). To (partially) avoid getting trapped
in local optima, for each fitted model, we repeated op-
timization procedures over hundreds of random initial-
izations and took the set of optimized parameters with
the smallest error as the final set of optimized param-
eters. Empirically, such nested optimization procedure
converged to ground-truth model parameters almost all
the time. Unlike CNNs (Section 4.1.2) or GLMs (Sec-
tion 4.3.3), here all the training data were used in the
actual training and no model selection was performed,
as Gabor models have very few parameters and overfit-
ting should not be a problem.

4.2.1 Linear combinations of “standard” Gabor-based
models

The implementation details are essentially the same as
those in Section 4.2. We tried the following combina-
tions of simple cell and complex cell models: one simple
plus one complex; one simple plus two complex; two
simple plus one complex.

4.3 Generalized linear models

4.3.1 Vanilla GLMs and Fourier power models

For vanilla GLMs (Section 3.3.1), raw stimuli were vec-
torized into 400-dimensional vectors as model input;
for Fourier power models (Section 3.3.2), we first ap-
plied a Hann window to each raw stimulus as done in
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10 Yimeng Zhang⇤ et al.

David and Gallant (2005) to reduce edge artifacts, and
then computed 2D Fourier power spectra individually
for windowed stimuli as model input.

4.3.2 GQMs

GQMs (Section 3.3.3) are simply standard GLMs with
quadratic transformation on input. A full quadratic trans-
formation over a 400-dimensional raw input vector would
result in a vector of more than 80,000 dimensions. To
make the number of parameters manageable, we per-
formed the following two optimizations for the model
input of GQMs.

– Instead of the full quadratic transformation, we per-
formed local quadratic transformations with di↵er-
ent “localities” (Figure 5). Local quadratic transfor-
mations only compute quadratic terms over stimu-
lus pixels that are close enough. For example, a lo-
cal transformation with locality 2 will only compute
quadratic terms over pixels that are at most 2 pixels
apart in both horizontal and vertical axes. For this
study, we tried localities 2, 4, and 8.

– Even with local quadratic transformations, the in-
put dimensionality is still too high for e�cient op-
timization of model parameters. Therefore, we per-
formed principal component analysis (PCA) on the
outputs of local quadratic transformations to re-
duce their dimensionalities. For a fair comparison of
GQM models and our CNN models, 882 dimensions
3 were kept as this would make our GQMs have the
same number of parameters as our 9-channel CNN
(see Section 4.1.1; the 9-channel CNN has 883 pa-
rameters, and a GLM with a 882-dimensional input
has 883 parameters due to the bias parameter). The
dimensionality reduction procedure kept over 95%
of the variance; if the input dimensionality had been
made to align with CNN models with fewer chan-
nels, less than 95 % of the variance would have been
kept and the performance of GQMs might have been
a↵ected much.

4.3.3 Optimization

All the models were implemented using glmnet (Fried-
man et al., 2010) as Poisson GLMs. Similar to CNNs

3 In practice, we performed PCA only on the pure quadratic
terms to reduce their dimensionalities to 432 and concate-
nated the PCAed 432-dimensional pure quadratic terms with
the 400-dimensional linear terms to generate the final 882-
dimensional input vectors; such method would guarantee that
the information from linear terms, which are heavily used in
most V1 models, is preserved. We also tried performing PCA
on both linear and pure quadratic terms together and two
methods made little di↵erence in our experiments.

� = 0
{(      ,      )}

{(      ,      )}{(      ,      )} ∪ {(      ,      )}∪

{(      ,      )}{(      ,      )} ∪ {(      ,      )}∪ {(      ,      )}∪

� = 1

� = 2

� ≥ 10

{(      ,      )}{(      ,      )} ∪

�

Q

(x, �) = {x

i,j

} � {x

i,j

x

i+m,j+n

}, 0  |m|, |n|  �

Fig. 5 Quadratic feature transformation �Q(x, ⌧) trans-
forms original stimulus x, whose elements are indexed by pixel
locations i, j, into quadratic features with “locality” ⌧ . The
output vector contains the union of first order terms {xi,j}
and second order terms involving pixels di↵ering by at most ⌧
pixels in all directions, as shown by the equation above. The
diagram below shows how to compute the second order terms
(shaded box in the equation) of some pixel (denoted in red)
in a 10 px by 10 px stimulus for di↵erent ⌧ ’s. When ⌧ = 0,
only the second order interaction between the red pixel and
itself is included; when ⌧ = 1, additional interactions between
the red pixel and each green one are included, and so on.

(Section 4.1.2), 80% of the training data were used for
actual training and the remaining 20% were kept as
validation data for model selection. L1 regularization
was used and the best regularization parameter was
selected (out of 100 candidates) by computing model
performance on the validation data in terms of Pearson
correlation coe�cient. For all the three GLM variants,
the (transformed) input stimuli have highly correlated
dimensions, due to high correlations between adjacent
pixels in the original stimuli, and such high correlations
in the input made glmnet converge extremely slowly in
practice. We worked around this issue by performing
full PCA (without reducing the dimensionality) on in-
put stimuli before feeding them to glmnet. Empirically
we found this speedup trick made little or no di↵erence
to model performance. We also tried Gaussian and soft-
plus GLMs; they performed similarly to or worse than
Poisson ones in our experiments (Supplementary Ma-
terials).

5 Results

5.1 CNN models outperformed others especially for
higher-order neurons

Figure 6 shows the performance of CNN models vs. oth-
ers (except pre-trained CNN models; see Section 5.4) on
explaining our V1 neural data. Because the full stimulus
set consists of di↵erent types of stimuli (OT, CN, CV,
etc.; see Section 2.1), and the full population of neurons
for each monkey consists of two subsets (OT neurons
and HO neurons, which can be divided into finer sub-
sets as well; see Section 2.2) that responded very di↵er-
ently to di↵erent types of stimuli, we trained all models
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Convolutional neural network models of V1 responses to complex patterns 11

using di↵erent stimulus subsets (“OT” stimuli and all
stimuli; we also tried training only on “nonOT” stimuli,
and that gave similar results to using all stimuli), and
evaluated each model in terms of its average CC2

norm

(Section 3.6) averaged over OT neurons and HO neu-
rons (for results on finer subsets, see Section 5.2 and
later). We do not show results of HO neurons trained
on OT stimuli, as HO neurons by definition did not
respond to OT stimuli well and the results might be
unreliable.

We compare CNN models and other models at two
di↵erent levels. At the individual model architecture
level (solid bars in Figure 6), we compare specific CNN
architectures (models with di↵erent numbers of chan-
nels) with Gabor models and GLMs. In this case, CNN
models with more channels worked better and they
outperformed their GLM counterparts (B.2 vs. Fourier
power GLMs, B.4 vs. linear GLMs, and B.9 vs. GQMs;
see Section 4.1.1) across the board; GQMs had in gen-
eral better performance than other GLMs, but still fell
behind CNNs by a large margin. Gabor models per-
formed similarly to GLMs or worse, and were outper-
formed by CNNs as well.

At the overall model category level (dashed lines
in Figure 6), we compare CNN models as a whole to
Gabor models as a whole as well as GLMs as a whole.
To do this, for each model category, we constructed
an “all” model for that category by choosing the best
performing model architecture (in terms of performance
on validation data for CNNs and GLMs, and in terms of
performance on training data for Gabor models; testing
data was never used during the model selection) for
each individual neuron. By comparing the dashed lines,
we have the following empirical observations about the
three model classes.

CNNs outperformed other models especially for HO neu-
rons with complex stimuli When stimuli were the same,
the relative performance gap between CNN and other
models was larger for HO neurons than OT neurons
(middle and right columns of panels of Figure 6). For
example, on Monkey A, the relative performance in-
crease of the CNN over the GLM increased from 34.2 %
for OT neurons to 52.2 % for HO neurons. When neu-
rons to model were the same, the relative performance
gap was larger for complex stimuli than simple stimuli
(left and middle columns of panels of Figure 6). For ex-
ample, on Monkey A, the relative performance increase
of the CNN over the Gabor model increased from 27.3 %
for “OT” stimuli to 48.5 % for all stimuli.

Priors on Gabor models helped especially with limited
data When the stimuli were limited and simple, Ga-
bor models outperformed GLMs, possibly due to the

strong and neurophysiologically reasonable prior on Ga-
bor models that filter weights can be described well by
Gabor functions (Jones and Palmer, 1987a), and vice
versa when the stimuli were relatively su�cient and
rich (leftmost column of panels vs. other panels of Fig-
ure 6). One may hypothesize that multi-component Ga-
bor models (multi ones) outperformed standard ones
(complex and simple) mostly due to having multiple
orientations; this was not true as shown in Section 5.3.

Finally, Figure 7 shows the fitting results of some
neurons in di↵erent classes (see Section 2.2); for CNN
models, we also show the learned filters and visualiza-
tion results obtained by activation maximization (Olah
et al., 2017); these visualization results are images that
activate fitted CNNs most. In most cases, Gabor models
and GLMs failed to predict the high-responding parts
of the tuning curves compared to CNNs.

In Supplementary Materials, we show that CNN
models outperformed others even with less amount of
data; we also show additional results on CNN models,
such as comparison of di↵erent optimization configu-
rations and comparison of di↵erent architectures (dif-
ferent numbers of layers, di↵erent kernel sizes, and so
on). We will focus on the one-convolutional-layer CNN
model B.9 with 883 parameters for the rest of this
study, because its performance was close to the best
among all the CNN models we tried (Supplementary
Materials) without having too many parameters, and
its one-layer architecture is easier to analyze than those
of similarly performing models.

5.2 What made CNNs outperform other models

As shown in Figure 6, the baseline CNN architecture
alone (B.9) outperformed GLMs, which were the best
non-CNN models in this study, by a large amount, es-
pecially for HO neurons. By comparing the row for the
CNN and the rows for GLMs (particular the row for the
GQM, as GQMs overall performed better than other
GLM variants) in Table 1 (Section 3.4), we hypothe-
size that this performance gap was primarily due to
the structural components present in the CNN but not
in GLMs we studied: thresholding nonlinearity (ReLU),
max pooling, and shared weights of hidden units (con-
volution). To test our hypothesis, we explored di↵erent
variants of our baseline CNN architecture B.9 in terms
of its structural components. The results on thresh-
olding nonlinearity and max pooling are given in this
part, and those on convolution are given in the next
part. While our GLMs possess an exponentiation non-
linearity which is not present in our CNNs, we found
that the exponentiation gave little performance increase
than without (Supplementary Materials).
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Fig. 6 CNN models vs. others on explaining V1 neural data. Two rows of panels show results for monkey A and monkey B
respectively, and three columns of panels show how models performed on di↵erent neuron subsets (“OT” and “HO”), evaluated
on di↵erent subsets of stimuli (“OT” and “all”). For each panel, the model performance is shown in CC2

norm

averaged over
neurons in the neuron subset. For each category of models (cnn, glm, etc.), solid bars show model performance of di↵erent
specific model architectures, and dashed lines (su�xed by all) show the category’s overall “best” performance by taking
the best model architecture for each individual neuron (in terms of validation performance for CNNs and GLMs and training
performance for Gabor models). Boldface numbers are the relative performance increases of the CNN classes over non-CNN
classes (computed as ratios between dashed lines minus one). For CNN models (red), check Table 2 for their meanings. For
Gabor models (blue), complex and simple mean complex cell and simple cell models; multi.MsNc means linear combinations
of M simple and N complex model(s). For generalized linear models (green), linear means vanilla GLM; fpower means Fourier
power GLM; gqm.x (x being one of 0,2,4,8) means the quadratic GLM with locality x.

To better understand the utilities of thresholding
nonlinearity and max pooling, we explored various vari-
ants of the baseline CNN architecture in terms of non-
linearity and pooling scheme. Specifically, we tried all
combinations of five di↵erent nonlinearities—ReLU (R),
ReLU followed by squaring (half-squaring, HS), squar-
ing (S), absolute value (A), linear (no nonlinearity, L)—
and two di↵erent pooling schemes—max pooling (max),
average (mean) pooling (avg)—with other structural
components unchanged. Thus, we obtained ten di↵er-
ent CNN variants (including the original one) and com-
pared them with the “all” model for GLMs (picking the
best model architecture for each neuron), or GLM all

as reference. Results are shown in Figure 8 and Fig-
ure 9, which have the same organization: panels a-c
show the performance of all explored models as before,
but with CC2

norm

over OT and HO neurons decomposed
into average CC2

norm

for finer subsets inside OT and HO
neurons (Section 2.2) to examine model performance
in more detail; panels d-f show the neuron-by-neuron
comparison of di↵erent pairs of models for highlighting.
Overall, we have the following observations (letters in

the parentheses denote the panels used for highlighting
among d-f, if any).

– Thresholding nonlinearities outperformed non-thresholding
ones (d,e).

– Thresholding nonlinearities performed similarly (f).
– No consistently better pooling type, but max pool-

ing was more powerful in isolation.
– High correlation between per-neuron and average

model performance (almost all panels).

Thresholding nonlinearities outperformed non-thresholding
ones Compared to GLMs we explored in this work,
one nonlinear structural component unique to CNNs is
ReLU, a thresholding nonlinearity. To understand the
usefulness of thresholding nonlinearities in general, we
compared four CNN variants with thresholding nonlin-
earities (R max, R avg, HS max, HS avg) with four with-
out (A max, A avg, S max, S avg) and found that thresh-
olding (R, HS) in general helped. This can be seen at
two levels. At the level of individual architectures, those
with thresholding generally performed better than those
without (d, e, and rows 5-8 from the top vs. 1-4 in

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Convolutional neural network models of V1 responses to complex patterns 13

Orientation CornerCurvature Cross Compositiona

b

c

d

Fig. 7 Example neurons and their fitting results. For each of the five stimulus classes shown in di↵erent columns, we show the
following four pieces of information regarding the fitting of a neuron that responded better to this class than the others (a-d).
a The top 20 responding stimuli of the neuron; b the fitted CNN fully connected output layer’s visualization results (over
5 random initalizations) obtained by activation maximization (Olah et al., 2017) implemented in keras-vis (Kotikalapudi,
2017); c the fitted CNN’s four 9 by 9 convolutional filters (each scaled by the sum of squares of its associated weights in
the fully connected layer); d the neuron’s fitting results (over testing data) on three categories of models: CNN, Gabor and
GLM, with model performance in terms of CC2

norm

given in the legends. As each category of models has multiple variants or
architectures, we roughly speaking picked the overall best one for each category. We picked the 4-channel architecture B.4 for
CNN, as it performed almost the same as the baseline B.9 (Figure 6) and allows easier visualization and interpretation; we
picked multi.1s2c for Gabor, and gqm.4 for GLM as they performed overall better than other variants. Check Figure 6 for
the meanings of model names.

a-c of Figures 8 and 9). At the level of model cate-
gories, we combined all four thresholding models into
one “all” model (T all) and all four non-thresholding
ones as well (NT all), using the same method as we
constructed “all” models in Figure 6; we found that
thresholding helped as well. Our results suggest that
the recorded V1 neurons actually take some thresholded
versions of the raw input stimuli as their own inputs.
There are at least two ways to implement this input
thresholding. First, neurons may have some other up-
stream neurons as their inputs, each upstream neuron
with its own thresholding nonlinearity as modeled in
McFarland et al. (2013); Vintch et al. (2015). Second,
the thresholding may happen at the dendritic tree level,
as suggested by Gollisch and Meister (2010).

Thresholding nonlinearities performed similarly While
the two thresholding nonlinearities (R and HS) showed
better performance overall, we did not see much di↵er-
ence between the two (f, and HS max vs. R max, HS avg

vs. R avg in a-c of Figures 8 and 9). This observation
was consistent with Heeger (1992), where the author
claimed that these two types of thresholding nonlinear-
ities are both consistent with physiological data and

the brain might be using one as an approximation to
implement the other.

No consistently better pooling type, but max pooling was
more powerful in isolation While thresholding nonlin-
earities showed better performance consistently than
non-thresholding ones as shown above, the results were
mixed for two pooling schemes and depended on non-
linearities, combinations of neurons and stimuli, and
monkeys (rows 1-8 from the top, as well as MAX all vs.
AVG all that were constructed like T all and NT all

above, in a-c of Figures 8 and 9). We suspect such mixed
results were due to the complicated interaction between
nonlinearity and pooling. In other words, the contribu-
tions of nonlinearity and pooling to model performance
do not add linearly. Still, we think max pooling is a
powerful computational component per se for model-
ing neural responses, as max pooling alone without any
nonlinearity performed comparably with many other
models with pooling and nonlinearity (L max vs. oth-
ers in a-c of Figures 8 and 9).

High correlation between per-neuron and average model
performance Figures 8 and 9 show that di↵erent mod-
els performed di↵erently. We found that the perfor-
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Fig. 8 Detailed comparison of CNN variants, monkey A. a-c
ten variants of the baseline CNN (B.9), along with the “all”
model for GLMs GLM all (Figure 6) for reference. In addition,
four “all” CNNs, each of which constructed from CNN models
with some shared structural component (thresholding nonlin-
earity T, non-thresholding nonlinearity NT, max pooling MAX,
or average pooling AVG), are shown as well. CNN variants are
named X Y where X and Y denote nonlinearity and pooling
type, respectively (Section 5.2). The organization of panels
is the same as that in Figure 6, except that only results for
Monkey A are shown (see Figure 9 for Monkey B). Rows show
di↵erent models, whose performance metrics (mean CC2

norm

)
are decomposed into components of neuron subclasses, de-
noted by di↵erent colors (legend on the right). For each model
in some panel, the length of each colored bar is equal to the
average performance over that neuron subclass multiplied by
the percentage of neurons in that subclass, and the length
of all bars concatenated is equal to the average performance
over all neurons. The baseline model has its name in bold, and
“all” models in italics. d,e Neuron-by-neuron comparison of
the a CNN variant with thresholding nonlinearity (HS max)
vs. one without (S max) for OT neurons, all stimuli (d) and
HO neurons, all stimuli (e). For d, e, and f, performance
metrics (mean CC2

norm

) are shown at corners, Pearson corre-
lation coe�cients between models are shown at the top left,
and regression lines for di↵erent neuron subclasses (colored
solid) together with the regression line over all neurons (black
dashed) are shown at the bottom right (scaled and shifted to
the corner for clarity; otherwise these regression lines will
clutter the dots that represent individual neurons). f Com-
parison of two thresholding nonlinearities, for HO neurons,
all stimuli. Results with max pooling are shown, and average
pooling gave similar results.

Fig. 9 Detailed comparison of CNN variants, monkey B.
Check Figure 8.

mance increase/decrease of one model over another one
seemed to be universal, rather than class- or neuron-
specific. We can see this universality from several as-
pects when two models are compared neuron by neuron
(d-f of Figures 8 and 9). First, there was a high correla-
tion between the performance metrics of individual neu-
rons (high Pearson correlation coe�cients r). Second,
we performed linear regression on each neuron subclass
as well as on all neurons (colored solid lines and black
dashed line in the lower right corner of each panel), and
found all regression lines were very close.

5.3 Convolution was more e↵ective than diverse filters

Apart from thresholding nonlinearity and max pool-
ing explored in Section 5.2, CNN models have another
unique structural component compared to other models
in our study—shared weights among hidden units via
convolution—as shown in Table 1. In contrast, other
models with multiple hidden units (when these models
are considered as MLPs; see Section 3.4) often have hid-
den units with independent and diverse weights without
sharing (“independent” in Table 1). In this section, we
explore the relative merits of these strategies for relat-
ing weights of di↵erent hidden units—shared weights
via convolution vs. independent weights—in terms of
model performance, not only for the CNN, but also for
other model classes. The results are shown in Figure 10,
with similar layout to Figures 8 and 9. We have the fol-
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lowing observations (letters in the parentheses denote
the panels used for highlighting).

– Multiple diverse filters alone did not help much (d
vs. e).

– Convolution helped achieve better performance with
the same number of parameters (f).

Multiple diverse filters alone did not help much To ex-
amine the impact of having multiple filters with di-
verse shapes, we explored two classes of models: Ga-
bor models and CNN models. For Gabor models, we
examined three single-filter variants—simple cell model
(Gabor s), complex cell model (Gabor c), and the “single-
component” Gabor model (Gabor single) constructed
from simple and complex cell models similarly to “all”
models in Figure 6—and one multi-filter variant—one
simple two complex (Gabor 1s2c; other multi-filter mod-
els performed worse as shown in Figure 6). For CNN
models, we varied the number of channels of the base-
line CNN B.9 from 1 (B.1) through 18 (B.18).

While the multi-filter Gabor model outperformed
both simple and complex cell models by a large margin
(a-c,d of Figure 10), we found that the single-component
model (Gabor single), which takes the better one of
simple cell and complex cell models for each neuron,
worked almost as well as the multi-filter one (a-c,e of
Figure 10). While there was still some performance gap
between Gabor single and the Gabor 1s2c, the gap
was relatively small and there was strong correlation
between the two models in terms of per-neuron perfor-
mance (Figure 10e). For each neuron, we further com-
pared the learned filters of simple, complex, and multi-
filter Gabor models, and found that in some extreme
cases, the learned multi-filter Gabor model was degen-
erate in the sense that it had its simple component dom-
inate its complex components or vice versa (Figure 10g;
check the caption).

The results for one-channel CNN and the baseline
9-channel CNN are shown in the top two rows of Fig-
ure 10a-c, and we found that the performance increase
(around 20 % to 50 %) was not proportional to the in-
crease in the number of parameters (around 800 %, or
99 vs. 883 parameters). See Figure 6 and Supplemen-
tary Materials for more results on the model perfor-
mance of CNN as we change the number of channels.

Convolution helped achieve better performance with the
same number of parameters As shown in the previ-
ous part, having multiple independent filters of diverse
shapes was not e↵ective for increasing performance rel-
ative to the increase in model size it involved. However,
we found that convolution was much more e↵ective,

achieving better model performance without increas-
ing the number of parameters. To illustrate this, we
compared the baseline CNN’s average pooling (R avg)
variant, which linearly combines ReLU units, with a
multilayer perceptron consisting of one hidden layer
of 40 ReLU units (MLP 40). To make the two mod-
els match in the number of parameters, we performed
principal component analysis to reduce the input di-
mensionality for the MLP to 20; therefore the MLP
has 40 ⇥ (20 + 1) + 40 + 1 = 881 parameters, roughly
matching the CNN (883 parameters). The CNN out-
performed the MLP by a relatively large margin (a-c,f
of Figure 10). We also explored the trade-o↵ between
input dimensionality and number of hidden units for
MLP, with the number of parameters roughly fixed
(Figure 10h); given roughly the same number of pa-
rameters, the CNN, which has convolution, consistently
outperformed MLPs of various configurations.

One may argue that the (average) pooling, which
was di�cult to avoid in our experiments as CNNs would
otherwise have too many parameters, helped model per-
formance as well; while such interpretation is possible,
it is also helpful to simply consider convolution and
pooling collectively as a modeling prior that helps neu-
ral response prediction with limited number of parame-
ters and training data. The e↵ectiveness of convolution
and pooling could also be due to eye movements during
neural data recording; as shown in our previous work
(Tang et al., 2018), the eye movement was in general
very small (the standard deviation of the distribution of
eye positions during stimulus presentation was in gen-
eral less than 0.05� in visual angle, or 0.75 px in the
20 px by 20 px input space of the CNN) for our data,
and such interpretation was less likely.

5.4 Data-driven vs. pre-trained CNNs and the
complexity of V1 neural code

The results are shown in Figure 11. When di↵erent
CNN layers are compared (Figure 11g), overall layer
conv3 1 performed the best (conv4 1 performed simi-
larly but we prefer layers that are lower and thus easier
to analyze). The result was largely consistent with that
in Cadena et al. (2017); however, we also observed per-
formance decreases in layers conv3 2 through pool3

which were not present in Cadena et al. (2017), and
we will investigate this in the future. When the best
VGG layer and our baseline CNN B.9 are compared,
the VGG layer performed simiarly to the CNN (Fig-
ure 11a-c), and there was a relatively high correlation
between the performance metrics of individual neurons
for two models (Figure 11d-f). We have also tried other
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complexsimple
1s2c
0.531 0.040

0.005

Fig. 10 Convolution seemed more important than diverse
filters. a-f Comparison of single- vs. multi-component Gabor
models (highlighted in d,e), comparison of single- vs. multi-
channel CNN models, and comparison of models with and
without convolution (highlighted in f). See Section 5.3 for de-
tails. These panels have similar formats to those in Figure 8. g
Learned single- (simple and complex) and multi-component
(1s2c) Gabor models fitted to a particular neuron’s data. This
neuron was tuned to corners as shown in the top right part of
the panel. For the three models (left, middle, right), we show
the learned filters (top) and fitting results (bottom). Simple
cell components are shown with red borders, and complex
cell components are shown with blue borders. For the multi-
component model, we also show the weights of di↵erent com-
ponents at the top of filters. In this case, the multi-component
model was dominated by its simple component with weight
0.531, which was orders of magnitude larger than the weights
of its complex components. h Performance vs. number of hid-
den units for MLP models. Vertical dashed lines denote the
MLP model (MLP 40) in panels a-c,f, and horizontal dashed
lines show performance metrics of the CNN R avg. Only re-
sults for monkey A are shown and monkey B gave similar
results.

variants of VGG and they performed similarly to or
worse than VGG19 (Supplementary Materials).

While our results show that pre-trained CNNs were
on par with CNNs trained from stratch, it is possible
that pre-trained CNNs would perform much better if
they were trained on artificial stimuli as well due to
the large di↵erence between the image set used to train
VGG19 (natural images) and from our artificial stim-
ulus set. However, such possibility might be not very
likely: (1) in our preliminary e↵orts to apply the state-
of-the-art 3-layer CNN architecture in Cadena et al.
(2017) to model our V1 neurons all together (Supple-
mentary Materials), we found that the 3-layer CNN,
within the limit of our hyperparameter tuning, per-
formed similarly to our baseline CNN; (2) Cadena et al.
(2017) have already established (somewhat) that the 3-
layer CNN architecture and pre-trained CNNs perform
similarly when all are trained with stimuli of similar
nature. On the other hand, we found it interesting that
CNNs trained on natural images could be used to e↵ec-
tively predict neural responses on artificial stimuli.

We also visualized units across various layers of the
VGG19 network by activation maximization (Olah et al.,
2017) implemented in keras-vis (Kotikalapudi, 2017),
and found that these units from layers that matched
neural data well (conv3 1 and conv4 1) are tuned to
relatively complex image features rather than oriented
edges (Figure 11h); the visualization results were con-
sistent with our earlier work (Tang et al., 2018) on the
complexity of V1 neural code.

6 Discussion

6.1 Key components for the success of CNN

In this study, we evaluated a variety of Gabor-based
models, generalized linear models, and CNN models
for modeling V1 neurons of awake macaque monkeys.
These models can be considered as a continuum of re-
gression models in statistics or system identification
models in sensory neuroscience (Wu et al., 2006); specif-
ically, they can be considered as one-hidden-layer neu-
ral networks with di↵erent structural components and
di↵erent degrees of model flexibility (Section 3.4). This
comparative study allows us to empirically identify some
key components that are important for modeling V1
neurons, particularly those neurons with selectivity to
higher-order features as identified in Tang et al. (2018).

In Section 5.2, we evaluated CNN models under dif-
ferent combinations of nonlinearity (ReLU, half-squaring,
squaring, and linear) and pooling scheme (max and av-
erage), and we found that thresholding nonlinearity and
max pooling, which are absent in the best-performing
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conv2_1

conv3_1

conv4_1

Fig. 11 Transfer learning (goal-driven) approach for model-
ing V1 neurons using a pre-trained CNN (VGG19). a-f the
best performing VGG19 layer (conv3 1) vs. the baseline CNN
(B.9). These panels have similar formats to those in Figure 8.
g Model performance across di↵erent VGG19 layers, for dif-
ferent combinations of neuron subsets and stimuli. Only re-
sults for monkey A are shown, and monkey B gave similar
results (Supplementary Materials). h Visualization of some
conv2 1 (left), conv3 1 (bottom), and conv4 1 (right) units
by activation maximization (Kotikalapudi, 2017; Olah et al.,
2017). Each unit was visualized by the image (cropped to
50 px by 50 px) that maximizes the unit’s activation. See Sup-
plementary Materials for more results.

non-CNN models (GLMs) in this study (Table 1), were
important for the CNN’s superior performance relative
to other models. In particular, we found that mod-
els with thresholding nonlinearities (ReLU and half-
squaring) consistently performed better than those with-
out. Interestingly, thresholding nonlinearities such as
ReLU and half-squaring are already in classical mod-
els of simple cells (Andrews and Pollen, 1979; Heeger,
1992), and pooling (average pooling or max-pooling)
of simple cells responses are also in some models of
complex cells (Riesenhuber and Poggio, 1999; Finn and
Ferster, 2007). In fact, these models of simple and com-

plex cells were the inspiration to the development of the
convolutional neural network architecture (Fukushima,
1980) in the first place. The Gabor-based models did
not perform well mostly because their filters were re-
stricted to Gabor functions whereas filters in GLMs and
CNNs could take arbitrary shapes. The CNN provides
an elegant way of integrating nonlinearities in models
of simple and complex cells with more flexible filters in
GLMs; in addition, the CNN allows the linear combi-
nation of multiple filters, and such linear combination
increases model expressiveness.

When all the models are considered as one-hidden-
layer neural networks (Section 3.4), there are two strate-
gies for relating weights learned for di↵erent hidden
units—shared and spatially shifted weights (convolu-
tion) and independently learned weights for di↵erent
units (Table 1, “constraints among units”). We evalu-
ated the relative merits of these two strategies in Sec-
tion 5.3 and found that convolution was more e↵ec-
tive than having multiple independently learned units
both for better performance and fewer model param-
eters. Our CNN models are similar to subunit mod-
els in the literature (Rust et al., 2005; Vintch et al.,
2015; Hubel and Wiesel, 1962; McFarland et al., 2013),
where V1 neurons take (thresholded) responses of up-
stream intracortical neurons (with approximately spa-
tially shifted receptive fields) as their inputs and ex-
hibit local spatial invariance, particularly for complex
cells. Our CNN models are also consistent with previous
V1 modeling work using spike-triggered methods (Rust
et al., 2005; Park and Pillow, 2011) where the subspace
spanned by recovered subunits can be approximated
by the subspace spanned by one single set of spatially
shifted subunits with shared weights. Despite the simi-
larity between our CNN models and subunit models in
the literature, our systematic and comprehensive explo-
ration of the contribution of various structural compo-
nents in the CNN helps to illuminate which nonlinear
components are more important to the subunit models
(Section 5.2) and what strategies for relating subunits
were more e↵ective (Section 5.3).

Overall, we believe this study is the first one that
systematically evaluates the relative merits of di↵er-
ent CNN components in the context of modeling V1
neurons. We demonstrated that key components of the
CNN (convolution, thresholding nonlinearity, and pool-
ing) contributed to its superior performance in explain-
ing V1 responses. Our results suggests that that there
is a high degree of correspondence between the CNN
and biological reality.
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6.2 Complexity of V1 neural code

Using our neural dataset (Section 2), we have found
earlier (Tang et al., 2018) that a large proportion of V1
neurons in superficial layers are selective to higher-order
complex features rather than simple oriented edges. We
classified these neurons selective to higher-order com-
plex features as “higher-order” (HO) neurons and oth-
ers as “orientation-tuned” (OT) neurons (Section 2),
some of which also exhibited complex feature selectiv-
ities due to the strictness of our classification criterion
(Tang et al., 2018). In this study, we showed that the
performance gap between CNN models and non-CNN
models (Gabor-based models and GLMs) was more pro-
nounced in HO neurons than in OT neurons, and we
took this as an additional evidence supporting the com-
plexity of V1 neural code in HO neurons.

In addition, by fitting intermediate features from a
pre-trained, goal-driven CNN (VGG19) to our neural
data, we found that a relatively high layer (conv3 1),
which encodes relatively complex image features (Fig-
ure 11h), explained our neural data the best among all
the VGG19 layers. This finding further reinforced the
claim that V1 neurons in superficial layers might have a
great degree of complex selectivity and was largely con-
sistent with Cadena et al. (2017) where the same layer
(conv3 1) in VGG19 provides the best model of V1 re-
sponses to natural images in their study. Furthermore,
the fact that such pre-trained, goal-driven neural net-
works performed well for explaining neural responses
both in V1 (our study and Cadena et al. (2017)) and
in IT (Yamins and DiCarlo, 2016; Yamins et al., 2013;
Kriegeskorte, 2015) is another piece of evidence that
there is a high degree of correspondence between the
CNN and biological reality.

6.3 Limitations and varieties of the CNN

While CNN models, especially those goal-driven ones
pre-trained on computer vision tasks, performed very
well in our study and some other studies (Cadena et al.,
2017) for V1 neuron modeling, we should point out that
even the best-performing CNN in our study only ex-
plained about 50% of the explainable variance in our
neural data, consistent with Cadena et al. (2017). The
failure of CNN models for explaining the other half of
the variance in V1 data can be due to a number of rea-
sons. First, V1 neurons are subject to network interac-
tion and their neural responses are known to be medi-
ated by strong long-range contextual modulation. Sec-
ond, it is possible that there are some basic structural
components missing in the current deep CNN method-
ology for fully capturing V1 neural code.

An important design issue with CNN modeling is
the depth of the network. Here, we used a very basic
one-convolutional-layer CNN because we can then for-
mulate all models as one-hidden-layer neural networks
(Section 3.4) and directly evaluate the relative contribu-
tions of di↵erent model components (Sections 5.2 and
5.3). We found that, at least for our data, adding an
additional convolutional layer did not produce signif-
icant performance benefit (Supplementary Materials),
and the performance di↵erence between our baseline
one-convolutional-layer CNN and the pre-trained CNN
was relatively small (Figure 11). Our findings suggest
that the true nature of V1 neurons does not need to be
modeled by a very deep network. However, other studies
typically use deeper CNNs. McIntosh et al. (2017) used
a 2-convolutional-layer CNN with to model retinal gan-
glion cells; Kindel et al. (2017) and Cadena et al. (2017)
used 2- and 3-convolutional-layer CNNs to model V1
neurons respectively. It is possible that 2 or 3-layer net-
works are needed for modeling V1 neural responses to
natural images that are richer than our artificial stim-
uli; in addition, higher layers in those models might be
functionally equivalent to the max pooling layer in our
CNN, as those multi-layer CNNs typically do not use
pooling. Given there are multiple layers of neurons on
the pathway between the photoreceptors in the retina
and superficial layer cells in V1, biologically speaking,
a much deeper CNN should provide a more accurate
model in a more general setting.

Most CNN-based work models all the neurons in a
data set with a single network, with shared parame-
ters in lower layers and separate sets of parameters for
di↵erent neurons in higher layers (Kindel et al., 2017;
McIntosh et al., 2017; Klindt et al., 2017; Cadena et al.,
2017). Instead, we model each neuron separately to al-
low a more fair comparison between CNN models and
other models (GLMs, etc.) that typically model neu-
rons separately without parameter sharing, and a fair
comparison allows us to understand the CNN’s success
compared to other models more conveniently. We also
tried modeling all neurons using a single CNN (Sup-
plementary Materials) with an architecture similar to
that in Cadena et al. (2017); to our surprise, large single
CNNs that model all neurons together performed simi-
larly to our baseline CNNs that model each neuron sep-
arately, given roughly the same number of parameters;
for example, a 3-layer single CNN with around 300k
parameters trained on some (around 350) HO neurons
performed similarly to separately trained CNNs, which
together take around 300k parameters (883 parameters
per model) as well. More investigation (better hyper-
parameter tuning, better network architecture, etc.) is
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needed to improve the performance of modeling using
a single CNN on our V1 data.
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