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Summary:	 Recent	 statistical	 modeling	 techniques,	 such	 as	 pursuit	 models	 and	 convolutional	
neural	 network,	 intended	 to	 recover	 visual	 neurons’	 receptive	 fields	 or	 preferred	 features	 by	
fitting	neuron’s	responses	to	a	large	number	of	images.	These	models	have	decent	performance	
in	 terms	of	prediction	but	 tend	 to	yield	kernels	with	 fairly	noisy	and	uninterpretable	 features.	 	
This	might	due	to	the	fact	 that	the	problem	is	under-constrained,	and	there	are	many	possible	
local	minima	solutions.	We	hypothesize	that	features	learned	by	unsupervised	learning	based	on	
sparse	coding	principle	(Olshausen	and	Field,	1996)	might	provide	more	interpretable	kernels	to	
build	 projection	 pursuit	 or	 CNN	 models	 for	 predicting	 neurons’	 responses.	 Our	 experiments	
show	 that	 this	 approach	 yielded	 more	 interpretable	 feature	 kernels	 and	 at	 the	 same	 time	
produced	better	prediction	performance	than	CNN	models	(Zhang	et	al.	2018,	J.	Computational	
Neuroscience)	with	 the	 same	number	or	more	parameters.	Our	 experiments	 also	 suggest	 that	
our	 model	 is	 more	 robust	 against	 noise	 than	 the	 CNN	 models.	 Having	 a	 set	 of	 interpretable	
feature	detectors	provide	a	new	approach	for	us	to	model	and	classify	V1	neurons	with	complex	
tunings	(Tang	et	al.	2017,	Current	Biology)	based	on	their	feature	preference.	
Motivation:	 In	our	earlier	paper	(Y.	Zhang	et	al.	2018),	as	well	as	works	of	others	(M.	Bethge,	
2017),	 convolutional	 neural	 networks	 (CNN)	 were	 used	 to	 fit	 neuronal	 responses,	 with	
state-of-the-art	performance.	However,	the	receptive	field	features	or	kernels	recovered	by	CNN	
are	typically	noisy	and	lack	interpretability,	and	not	useful	for	revealing	preferred	features	of	the	
neurons.	We	conjecture	that	there	exists	a	set	of	less	noisy	and	more	interpretable	basis	filters	
that	span	the	same	space	as	those	spanned	by	the	CNN	filters,	which	might	better	describe	the	
preference	of	the	neurons.	We	tested	this	conjecture	by	fitting	projection	pursuit	or	CNN	model	
with	the	set	of	feature	dictionary	derived	from	sparse	coding	principle	fixed	to	be	the	kernels.	
Method:	We	first	learnt	a	set	of	complete	and	over-complete	basis	features	using	the	method	of	
convolutional	sparse	coding	(Y.	LeCun	et	al,	2010)	and	use	them	as	the	set	of	feature	dictionary	

for	 CNN	 and	 projection	 pursuit	
modeling	 of	 the	 neural	 responses	 	
(J.	 Friedman	 et	 al,	 1981).	
Convolutional	 sparse	 coding	
provides	an	efficient	way	to	extract	
features	 for	 coding	 images	 with	
low	 redundancy.	 One	 set	 of	 learnt	
sparse	 coding	 dictionary	 is	 shown	

as	in	Fig.1.	These	features	are	found	to	resemble	macaque	V1	neurons’	receptive	fields.	We	thus	
find	it	reasonable	that	assume	that	these	models	of	V1	receptive	fields	can	be	used	as	the	first	
layer	of	 the	CNN	so	 that	 the	parameters	can	be	used	 in	 the	higher	 layer	 to	use	composition	of	
these	filters’	responses	to	construct	more	complex	feature	functions	to	model	the	complexity	of	
the	V1	neurons	we	 found.	Subsequently	we	experiment	 this	 idea	with	 two	classes	of	methods:	
projection	pursuit	regression	(PPR)	and	convolutional	neural	networks	(CNN).	PPR	models	input	
image	as	a	sum	of	general	smooth	functions	of	linear	sum	of	filters	over	this	image;	such	filters	
are	 trained	 in	 an	 iterative	 manner.	 This	 method	 has	 been	 used	 as	 an	 approach	 to	 recover	
neurons’	 receptive	 fields	 (L.	 Liu	 et	 al,	 2016).	 We	 proposed	 a	 new	 approach	 convolutional	
matching	pursuit	regression	(CMPR),	shown	as	CMPR	algorithm	below,	with	two	novel	ideas,	the	
first	is	to	a	set	of	fixed	learned	kernels,	and	the	second	is	to	convolve	the	image	with	the	kernels,	
instead	of	taking	the	dot	product	as	in	original	PPR.	This	allows	fitting	each	type	of	filters	to	the	
entire	image,	solving	the	translational	invariance	issue.	The	second	approach	we	experiment	is	



the	Fixed	Kernel	CNN	(FKCNN)	using	the	same	CNN	model	as	in	our	previous	paper	(shown	in	Fig.	
2).	 Instead	 of	 learning	 the	 kernel	 filter,	 FKCNN	 selects	 and	 fixes	 the	 kernels	 from	 the	 learnt	
dictionary	and	only	learn	the	parameters	of	the	fully	connected	layer.	 	
Experiment	 and	 Result:	The	dataset	was	 the	 responses	of	1142	V1	neurons	 to	9500	pattern	
stimuli,	 including	 edges,	 corners,	 curvatures,	 crosses,	 and	
some	 other	 (shown	 in	 Fig.	 3)	 for	 two	 monkeys	 and	
recording	 their	 visual	 neurons’	 firing	 rate.	 Using	
cross-validation,	 we	 fitted	 our	 models	 to	 the	 neural	
responses	 to	 a	 set	 of	 input	 images,	 and	 then	 tested	 on	
different	sets,	using	the	Pearson	correlation	of	the	predicted	
response	 and	 the	 actual	 response	 as	 an	 objective	 metric.	 	
We	 did	 not	 include	 neurons	 with	 fewer	 than	 50	 stimuli	
above	 0.2	 in	 df/f	 singal	 level.	 Table.	 1	 shows	 the	 average	

correlation	 across	 781	 neurons	 for	 each	
model.	 CNN	 4	 is	 the	 baseline	 CNN	 model	
with	4	kernel	filters	this	model	has	the	same	
number	 of	 parameter	 as	 FKCNN	model	 but	
performs	 worse.	 FKCNN	 is	 performing	 as	
good	as	CNN	9,	which	 is	CNN	with	9	kernel	
filters,	 but	 the	 number	 of	 parameters	 and	
training	time	for	FKCNN	is	significantly	less.	

Interpretability:	 We	 found	 that	 CNN	 built	 on	 transfer	 learning	 using	 interpretable	 filters	
outperformed	the	state-of-art	models.	Two	neurons	in	Fig.	4	shows	the	top	20	preferred	stimuli	
on	the	top	row;	on	the	second	row,	two	kernels	on	the	left	are	from	CPPR	and	two	kernels	on	the	
right	are	from	CMPR;	the	third	row	are	the	four	kernels	in	CNN	model;	fourth	row	are	the	top	4	
most	contributed	kernels	in	FKCNN	model,	the	importance	is	ranked	from	left	to	right.	The	filters	
are	selected	based	on	how	much	they	contribute	to	the	performance,	i.e.	the	first	one	is	the	one,	
without	which	 the	model’s	 performance	 suffers	 the	most,	 and	 so	 on.	 Apart	 from	 the	 fact	 that	
such	 filters	 are	 visually	 more	 interpretable	 and	 significantly	 closer	 to	 the	 neuron’s	 top	
responding	stimuli,	our	model	FKCNN	is	shown	to	be	more	robust	against	noise	as	 in	Table.	2	
where	10%	noise	means	we	add	10%	of	“salt	and	pepper”	noise	pixels	into	the	test	images.	

Neuron	Classification:	We	have	used	a	way	
to	classify	neurons	with	fixed	tunings	using	a	
very	stringent	criterion	that	is	biased	against	
higher	 order	 classification.	 All	 the	 stimuli	
above	 50%	 of	 the	 maximum	 response	 of	 a	
neuron	 has	 to	 be	 long	 to	 one	 of	 the	 higher	
order	class	(corner,	cross,	curvature)	in	order	
for	 that	 neuron	 to	 be	 classified	 into	 one	 of	
those	HO	class.	If	the	neuron	responds	to	only	
one	 bar	 stimulus	 above	 its	 0.5	 maximum,	 it	
will	 automatically	 disqualified	 as	 a	 higher	

order	(HO)	neuron,	and	classified	as	an	OT	(orientation	tuned)	neuron.	By	discovering	the	most	
important	 features	 that	 a	 neuron	 likes,	 we	 can	 classify	 the	 neurons	 based	 on	 their	 most	
preferred	 fitted	 feature,	 removing	 the	 bias.	We	 found	 classification	 based	 on	 this	 simple	 and	
intuitive	 measure	 is	 roughly	 75%	 consistent	 with	 our	 earlier	 more	 stringent	 method,	 and	
discrepancy	mostly	lies	in	those	neurons	prefer	mostly	HO	features,	but	fall	under	OT	class	due	
previous	classification	method	as	shown	in	Fig.	4’s	right	neuron.	 	


